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Abstract

In recent times, variable selection in high-dimensional data has become a challenging prob-

lem. We investigate here a popular but classical variable screening method, the Backward

Elimination (BE) in a high dimensional setup (small-n-large P). The BE method as a vari-

able screening method reduces the dimension of small-n-large P data into a lower dimen-

sional data and then established shrinkage methods such as: LASSO, SCAD and MCP can

be applied directly. To overcome the problems in high dimensional data, Chen and Chen

(2008) recently developed a family of Extended Bayesian Information Criterion (EBIC)

which is consistent with finite sample properties (Chen and Chen, 2008) which we used in

this study to select the best candidate model from the models generated by the proposed

BE method. We compare the BE with other screening methods such as: Sure Indepen-

dence Screening(SIS), Iterative Sure Independence Screening and Forward Regression (FR)

in simulation studies and real-data analysis to illustrate the selection consistency of our

proposed BE method. Our numerical analysis reveals that the BE with EBIC can identify

all important variables with high coverage probability, low false discovery rate and a very

good model size with high signal-to-noise.

KEY WORDS: Variable Screening, Backward Elimination, EBIC, LASSO, SCAD,

MCP, ISIS, SIS, FR, High Dimensional data
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Chapter 1

1. Introduction

1.1 Background

In recent years, modern research in genome-wide studies, health science, etc, encounters

high dimensional data problems. In most cases, the predictor variables are much larger than

the sample and this poses a lot of problem in analyzing such data set analysis such data set.

In a high dimensional setup, among the predictor variables are relevant variables as well

as irrelevant in reference to the response variable. The goal of a researcher in such cases is

to discover all of the relevant predictors while discading the irrelevant ones in relation to

the response variable. To this end, a lot of research has been devoted to this subject in the

last decades and one of these research areas is variable selection. There are lots of variable

selection methods like Forward regression, Backward regression, etc., however these meth-

ods are good for situations where the sample size is usually much larger than the predictor

variables. Therefore, variable selection with a high dimensional predictor is a problem of

fundamental importance according to Fan & Li (2006). To address this problem, variable

screening has become of importance as a step in variable selection. This step generally

removes irrelevant predictors, greatly simplifying the problem of high dimension to a low

dimension one. To this end, various methods such as SIS, FR, etc.,have gained popularity

in the last decades. The selection consistency of these methods have been established both

theoretically and numerically. Motivated by the outstanding performance of the FR and

the SIS, we rigorously analyze another popular yet classical variable screening method, the

Backward Elimination (BE). Like the FR, we establish the screening consistency of the BE

method under high-dimensional setup. Chen and Chen (2008) recently proposed a family
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of extended Bayes information criteria (EBIC) especially for variable selection in high di-

mensional situations to address the problem of overestimation of the BIC. They established

the consistency of EBIC under normal linear models.

The objective of our study is to contribute to existing literature by establishing modifying

the BE with EBIC’s screening consistency procedure in a high dimensional setup. The re-

sulting model from the BE method can serve as a starting point from where other variable

selection method (e.g LASSO, SCAD and MCP) can be applied. We confirm this through

simulation studies and real-data analysis. We use the EBIC instead of the conventional

BIC to access the models selected by the BE method.

1.2 Outline of Thesis

The remaining parts of the thesis are organized in this manner. Chapter 2 provides a

literature review on variable selection, screening and model selection criteria in detail. In

Chapter 3, our proposed method, Backward Elimination is presented and explained in

detail. Through simulation studies we will analyze and compare the performance of the

proposed method to existing methods in Chapter 4. We will apply our proposed method

further on a real data example and report on the findings. Finally, we will discuss the

limitations as well as strength of our proposed method and provide areas for future work

in Chapter 5.

2



Chapter 2

Literature Review

The aim of this chapter is to present a literature review on the steps involved in variable

selection with focus on the screening step. Limitations of variable selection methods in

high-dimensional settings are also addressed. Literature on variable screening methods are

further examined.

2.1 Variable Selection

In most practical problems, the analyst has a rather large pool of possible candidate vari-

ables, of which only a few are likely to be important. Finding an appropriate subset of

variables for a model is often called the variable selection problem. This problem generally

falls under the Exploratory Observational Studies (e.g., exploration of numerous gene sets

that might not all be associated with the continuous response). This is because a model

with numerous explanatory variables may be difficult to maintain. Also, the presence of

many highly intercorrelated explanatory variables may worsen the model’s predictive abil-

ity (Applied Linear Regression Model ,M.Kutner,2004)

In recent years, there has been much research efforts on dealing with the challenging prob-

lem of variable selection in high dimensional data (small-n-large P). This is largely due to

modern applications in medical studies, genetic research, bioinformatics, and other fields.

The consistency of various traditional methods of variable selection has been established

over the years. These methods include but are not limited to the LASSO (Tibshirani,

1996, 1997), the SCAD (Fan and Li, 2001; Fan and Peng, 2004), MCP (Zhang, 2010), and

related models. These methods have been applied for simultaneously selecting important

3



variables and estimating their effects in high-dimensional statistical inference, and have

demonstrated excellent performance in simulation studies (J.S. Hwang& T.H Hu, 2014).

All these methods have been shown to be useful and can be formulated as penalized op-

timization problems which could be selection consistent in a low dimensional data setup

(Hwang, 2009; Fan and Peng, 2004; Huang et al., 2008; Zou and Zhang,2008). Neverthe-

less, in high dimensional setup, these methods may not work well due to the simultaneous

challenges of computational expediency, statistical accuracy, and algorithmic stability (Fan

et al., 2009).

When the predictor dimension is much larger than the sample size, efficient algorithms

exist for methods like LASSO (Efron et al., 2004, LARS) where the objective functions are

strictly convex. Similarly, for methods like SCAD, etc., computationally how to optimize

these non-convex objective functions remains a non-trivial task (Hunter and Li, 2005;Chen

and Chen, 2008). Though most of these variable selection methods above tend to have

good theoretical properties; the difficulty in choosing a penalty function still remains a

challenge.

To address the problem of variable selection in high dimensional setup, Ing and Lai (2011)

introduced a fast stepwise regression algorithm called High-dimensional information crite-

rion (HDIC) which has been shown to have the oracle property of being equivalent to least

squares regressions on an asymptotically minimal set of relevant predictors under a strong

sparsity assumption. This method is shown to have impressive performance. The question

still remains on how we can do variable selection in a high-dimensional setup.

2.2 Variable Screening

One reasonable solution to variable selection in a high dimensional setup is variable screen-

ing. As an example, consider a gene expression data (p >> n) with 5000 genes as predictor

variables, there would be 25000 possible regression models to be considered. This would be

an overwhelming task hence the need for screening. Variable screening is therefore use-

4



ful in reducing the dimensionality of the variable space to a moderate one and then we

can apply variable selection techniques (He, Wang and Hong, 2013). Motivated by these

concerns, there has been a dramatic growth in the development of statistical methodology

in the analysis of high dimensional data (Shahriari, Fana and Goncalves, 2015). Accord-

ing to the paper by Fan,J. and J.Lv(2008), a common practice for variable screening is

using independence learning which treats the features as independent and thus applies

marginal regression techniques. Motivated by the aforementioned fundamental challenges

of ultra-high dimensional data analysis, the sure independence screening (SIS) was formally

introduced and justified by Fan,J. and J.Lv (2008) to address both issues of scalability and

noise accumulation. SIS method as proposed by Fan and Lv (2008) for linear regression

first filters out the variables that have weak correlation with the response, effectively reduc-

ing the dimensionality to a moderate scale below the sample size n, and then performing

variable selection and parameter estimation through a lower dimensional penalized least

squares method. According to S.Kim and S. Halabi (2016),Although this approach is pop-

ular, it does not perform well under some situations. First, unimportant variables that are

heavily correlated with important predictors are more highly likely to be selected than rel-

evant variables that are weakly associated with the response. Second, important variables

that are not marginally significantly related to the response are screened out. Finally, there

may be collinearity between variables that may impact the calculations of the individual

predictors.

An important methodology extension, Iterative Sure Independence Screening (ISIS), was

also proposed by Fan and Lv (2008) to handle cases where regularity conditions may fail,

such as when some important variables are marginally uncorrelated with the response,

or when an unimportant predictor has higher marginal correlation than some important

features. This method iteratively performs variable selection to recruit small number of

predictors, computing residuals based on the model fitted using these recruited predictors,

and then using as the working response variable to continue recruiting new predictors.

Motivated by the outstanding performance of SIS, Wang (2009) also investigated on the

5



screening consistency of the forward regression (FR) under an ultra-high dimensional setup.

The forward regression (FR) with EBIC can consistently identify both theoretically and

numerically all relevant predictors. The performance of the FR with variable selection

methods was established through simulation studies and real data application. Extensive

work has been done on FR as a variable screening method as well Stepwise regression as a

selection technique; but to the best of my knowledge, this is the first work that utilizes the

Backward Elimination (BE) as a variable screening method in a high dimensional setup.

Nevertheless, the BE has been extensively discussed as a variable selection method in the

low dimensional setup (n >> p)

2.3 Model Selection Criteria

To practically select the ”best” candidate from the models generated by the methods dis-

cussed, model selection criteria(e.g. Akaike Information Criterion (AIC) (Akaike, 1974),

Bayesian Information Criterion (BIC) (Schwarz, 1978)) have been developed in past years.

The efficacy of these criteria has been established through various simulation studies and

real data applications. However, these methods may not be good choices in a high di-

mensional setting. This is because these classical model selection criteria become overly

liberal and fail to serve the purpose of variable selection. They tend to select a model with

spurious predictors when used together with the traditional selection methods.Moreover,

these criteria are not selection consistent. This has been observed by Broman & Speed

(2002), Siegmund (2004), and Bogdan et al. (2004) in genetic studies.

To tackle this problem, Chen and Chen (2008) recently proposed the family of extended

Bayesian information criterion(EBIC). They further established that under normal linear

regression, EBIC is found to be consistent with interesting finite sample properties (Chen

& Chen, 2008). As an extension to this, they further established the consistency of this

method under generalized linear models in a high dimensional situation. The EBIC crite-

6



ria tightly controls false discovery rate (FDR) though it incurs a small loss in the positive

selection rate. Due to the performance of this criteria, Wang (2009) used this method to

select the best model generated by the FR.

7



Chapter 3

Methodolgy

In this chapter we describe variable screening methods which reduces high dimensionality

(Backward Elimination,Sure Independence Screening(SIS) and Iterative Sure Independence

Screening (ISIS)). We then describe methods of variable screening (LASSO, SCAD and

MCP). Finally, we describe the methods needed to assess variable selection models.

3.1 Backward Elimination

The Backward Elimination method begins with the full least squares model containing all

p predictors, and then iteratively removes the least useful predictor, one-at-a-time. Briefly,

the procedure works as follows ;

1. Start with all variables, p, in the model.

2. Remove the variable with the largest BIC value; that is the variable that is the least

statistically significant.

3. The new (p - 1) variable model is compared with the full model and then the variable

with the largest BIC is removed.

4. Continue until all selected variables in the final model minimizes the BIC value.

This method however is computationally infeasible in a high dimensional setup. Moreover,

the model criteria used along with this method (AIC,BIC,p-value,etc.) become overly

liberal and fail to serve the purpose of variable selection.

8



3.1.1 Modified BE Algorithm

Considering the Backward Elimination method as a screening method; We propose a mod-

ification to the BE Algorithm with the the idea of the SIS method that ranks all the p

variables based on the marginal correlations, ˆcorr(xj, y), of xjs with the response ,y, and

retains the top d covariates with the largest absolute correlations, where d is the reduced

dimension. The covariates with the largest absolute correlations is collected in the set M̂;

that is,

M̂ = {1 ≤ j ≤ p : |ĉorr(xj, y)| is among the top d largest ones} (3.1)

where ĉorr denotes the sample correlation. According to Fan & Lv (2008), the idea of SIS

is identical to selecting predictors using their correlations with the response. To implement

SIS, they proposed choosing d = [γn] to be conservative, for instance, n − 1 or n/logn

depending on the order of sample size n. We borrowed this idea on choosing variables

based on correlations and chose d = n/logn. The Modified BE algorithm works below as:

Step 1 : Rank the variables according to its correlation from largest to smallest.

Step 2 : Select top n number of variables.

Step 3 : Split the variables by d = [n/log n] thus {p1, . . . , pd} variables.

Step 4 : Start with the {p1, . . . , pd} variables in the model.

Step 5 : Find sub-best model based on extended BIC using backward elimination.

Step 6 : Add the next variables from {pd−1, . . . , pp} to variables in the sub-best model to

obtain d number of variables in the model such that d = [n/logn] variables are screened in

each iterative step

Step 7 : Repeat steps 5 and 6 until all of the p variables are used or extended BICs between

reduced model and full model are the same in Step 5.

9



3.2 Sure Independence Screening(SIS)

Consider the linear regression model

y = Xβ + ε (3.2)

where y = (y1, . . . , yn)T is an n-dimensional response vector, X = (x1, . . . , xp.)
T is an n× p

design matrix consisting of p covariates xj′s, β = (β1, . . . , βp) is a p-dimensional regres-

sion coefficient vector, and ε = (ε1, . . . , εn)T is an n-dimensional error vector. The focus

of Fan, J. and J.Lv (2008) is the ultra-high dimensional setting with log p = O(nα) for

some 0 ≤ α ≤ 1. To ensure model identifiability, the true regression coefficient vector

β0 = (β0, . . . , βp)
T is assumed to be sparse. The covariates xjs with indices in the support

M∗ = supp(β0) = 1 ≤ j ≤ p : β0,j 6= 0 are called important variables, while the remaining

covariates are referred to as noise variables(Fan,J. and J.Lv(2008)). The SIS is a two-scale

learning framework in which large-scale screening is first applied to reduce the dimension-

ality from p to a moderate one d, say, below sample size n, and moderate-scale learning

and inference are then conducted on the much reduced variable space.

In particular, the SIS ranks all the p features using the marginal utilities based on the

marginal correlations ĉorr(xj, y) of xjs with the response y and retains the top d covariates

with the largest absolute correlations collected in the set M̂; that is,

M̂ = {1 ≤ j ≤ p : |ĉorr(xj, y)| is among the top d largest ones} (3.3)

where ĉorr denotes the sample correlation. This achieves the goal of variable screening

(Fan,J and J. Lv(2008)).

An important question is whether it contains all the important covariates in the set M∗

with asymptotic probability one; that is,

P = {M∗ ⊂ M̂} → 1 (3.4)

as n→∞. The property in (3.3) was termed as the sure screening property by Fan,J. and

J. Lv(2008) which is crucial to the second step of refined variable selection. Surprisingly,

10



SIS was shown by Fan,J. and J.Lv (2008) to enjoy the sure screening property under

fairly general conditions, with a relatively small size of M̂. Specifically, the p covariates

xjs are allowed to be correlated with covariance matrix
∑

and the p-dimensional random

covariate vector multiplied by
∑−1/2 is assumed to have a spherical distribution. The sure

screening property of SIS depends upon the so-called concentration property for random

design matrix X introduced by Fan,J and J.Lv (2008).

With such a property, the sure screening property (3.3) can hold for d = o(n), leading to

the suggestion of choosing d = n−1 or [n/ log n] for SIS in the original paper by Fan,J. and

J.Lv (2008). In practice, the parameter d can be chosen by some data-driven methods such

as the cross-validation and generalized information criterion (Fan,Y and C.Tang,2013).

3.3 Iterative Sure Independence Screening(ISIS)

ISIS is an extension to the SIS method introduced by Fan,J. and J.Lv(2008) to address

the limitations of the SIS. Mainly, the idea is to iteratively update the estimated set of

important variables, using SIS conditional on the estimated set of variables from the pre-

vious step. Intuitively, such an iterative procedure can help recruit important covariates

that have very weak or no marginal associations with the response in the presence of other

important ones identified from earlier steps.

For logistic regression, the algorithm according to S.Kim and S.Halabi (2016) works in the

following way:

1. The likelihood of marginal logistic regression (LMLR) is computed for every j ∈ S =

{1, 2, . . . , p}. Then which is N/4log(N) of the top ranked variables of the descending

order list of the LMLR is selected to obtain the index set Î1

2. Apply those variables in Î1 to the penalized logistic models to obtain a subset of

indices M̂1

3. For every variable j ∈ {S − M̂1},the likelihood of the marginal logistic regression
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condition on the variables in M̂1 is solved. Then the likelihood estimators are sorted

in descending order and then the d top ranked variables are selected to get the index

set Î2.

4. Apply those variables in Î2 ∪ M̂1 to the penalized logistic models to obtain a new

index set M̂2

5. Steps (3) and (4) are repeated until M̂l = d or M̂l = M̂l−1

3.4 Variable Selection Methods

3.4.1 Least Absolute Shrinkage and Selection Operator (LASSO)

Definition 1 The Lasso is a shrinkage and selection method for linear regression. It min-

imizes the usual sum of squared errors, with a bound on the sum of the absolute values of

the coefficients.It forces the coefficients of unimportant variables to be set to 0. The LASSO

has sparsity property (S.Kim and S. Halabi,2016).

According to R.Tibshirani (1996), Suppose that we have data (xi, yi), i = 1, 2, . . . , N ,where

xi = (xi1, . . . , xip)
T are the predictor variables and yi are the responses. As in the usual

regression set-up, we assume either that the observations are independent or that the y′is

are conditionally independent given the xsij. We assume that the xij are standardized so

that
∑
i xij/N = 0,

∑
i x

2
ij/N = 1. Letting β̂ = (β̂1, . . . , β̂p)

T , the lasso (α̂, β̂) is defined by

(α̂, β̂) = argmin

{
N∑
i=1

(
yi − α−

∑
j

βjxij

)2
}
subject to

∑
j

| βj |≤ t (3.5)

here t ≥ 0 is a tuning parameter. Now, for all t, the solution for α is α̂ = ȳ. We can

assume without loss of generality that ȳ = 0 and hence omit α. The parameter t ≥ 0

controls the amount of shrinkage that is applied to the estimates. Let β̂oj be the full least

squares estimates and let t0 =
∑ | β̂0 |. Values of t ≤ t0 will cause shrinkage of the solutions

0, and some coefficients may be equal to 0. The design matrix need not be of full rank.
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3.4.2 Smoothly Clipped Absolute Deviation (SCAD)

The SCAD with concave penalty function overcomes the limitation of LASSO. The LASSO

thresholding penalty functions do not simultaneously satisfy the mathematical conditions

for unbiasedness, sparsity, and continuity. The continuous differentiable penalty function

defined by

p1λ(θ) = λ
{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)
}
for some a > 2 and θ > 0, (3.6)

improves the properties of the L1 penalty.We call this penalty function the smoothly clipped

absolute deviation (SCAD) penalty.It corresponds to a quadratic spline function with knots

at λ and aλ. This penalty function leaves large values of θ not excessively penalized and

makes the solution continuous (Fan,J. and Li,R.,2001). The smoothly clipped absolute

deviation method not only selects important variables consistently, but also produces pa-

rameter estimators as efficient as if the true model were known, i.e., the oracle estimator,

a property not enjoyed by the Lasso. The above features of the smoothly clipped absolute

deviation method rely on the proper choice of tuning or regularization parameter, which is

usually selected by generalized cross validation(Wang,H., Li,R., Tsai,C.) (Craven & Wahba,

1979).

3.4.3 Minimum Concave Penalty (MCP)

The idea behind the MCP is very similar to the SCAD. The continuous differentiable

penalty function is defined by

p1λ(θ) =
(
λ− | θ |

a

)
sign(θ) for some a > 1 (3.7)

As with SCAD, MCP starts out by applying the same rate of penalization as the lasso,

then smoothly relaxes the rate down to zero as the absolute value of the coefficient increases

in comparison to SCAD, however, the MCP relaxes the penalization rate immediately while

with SCAD the rate remains flat for a while before decreasing(C.H.Zhang,2010)
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3.5 The Extended Bayes Information Criterion (EBIC)

The extended Bayes information criterion is particularly suitable for model selection for

large model spaces (J.Chen & Z.Chen,2008).

The EBIC is given by

BICγ(s) = −2 logLn{θ̂(s)}+ v(s)logn+ 2γ log τ(Sj) 0 ≤ γ ≤ 1 (3.8)

where θ̂(s) is the maximum likelihood estimator of θ(s) given model s. Also, Sj is a partition

of the model space and τ(sj) is size of Sj. The first two terms in BICγ(s) are the Laplace

approximation to −2 log{m(Y |s)} where m(Y |s) is the likelihood of the model s, and the

last term is −2 log{p(s)} up to a constant. Chen & Chen(2008) showed that, under certain

conditions, the EBIC is selection consistent when γ is larger than 1−1/(2κ). Theoretically,

Chen &Chen(2008) proved the selection consistency of the EBIC if P = pn = O(nκ) as n

→∞ for some κ > 0.
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Chapter 4

Simulation Studies

4.1 Preliminaries

In this chapter extensive simulation studies have been conducted to evaluate the perfor-

mance of the Backward selection method. The performances of the SIS, Iterative SIS and

FR were also examined for the purpose of comparism. Mainly, there are four variable

screening methods (i.e., SIS, ISIS, FR and BE) were compared. For the variable selection

methods, we considered the LASSO, SCAD and MCP with the EBIC criterion (3.7).

Following the examples used in the Forward regression paper by H.Wang(2009) and other

papers;

For each parameter setup,a total of 200 simulation replications are conducted. The theoret-

ical R2 = var(XT
i β)/var(Yi) are given by 30%, 60% or 90%. Let β̂(k) = (β̂1(k), . . . , β̂p(k))

T

∈ Rd be the estimator realized in the kth simulation replication by one particular method

(e.g., BE-SCAD). Then, the model selected by β̂(k) is given by Ŝ(k) = {j :| β̂j(k) |> 0}

and the corresponding Model size =
∑
k | Ŝ(k) |. To characterize the method’s capability in

producing sparse solutions, we defined: the True Positive rate (TPR) which measures the

proportion of correctly identified true variables; False Positive rate (FPR) which is the pro-

portion of variables incorrectly identified as important or true; True Negative rate (TNR)

which measures the proportion of variables that are correctly identified as unimportant;

False Negative rate (FNR) measures the proportion of true variables that are incorrectly

identified as unimportant; and the False Discovery rate (FDR) which is the expected pro-

portion of Type 1 error (FP)
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4.2 The Simulation Models

For numerical comparison, we considered the following five simulation models.

Example 1. (Independent Predictors) This is an example by Fan and Lv (2008) with

(n, p, p0)= (200, 5000, 8). Xi is generated independently according to a standard multi-

variate normal distribution. Thus, different predictors are mutually independent. The jth

(1 ≤ j ≤ p0) nonzero coefficient of β is given by βj = (−1)Uj(4 log n/
√
n+ | Zj |), where

Uj is a binary random variable with P (Uj = 1) = 0.4 and Zj is a standard normal random

variable.

Example 2 (Autoregressive Correlation) This is an example from Tibshirani (1996) and

modified by Wang (2009).We considered an autoregressive correlation structure type. This

correlation structure might be useful if a natural order exists among the predictors. As a

consequence, the predictors with large distances in order are expected to be mutually in-

dependent approximately.An example from Tibshirani (1996) with (n, p, p0)= (200, 8000, 3).

Xi is generated from a multivariate normal distribution with mean 0 and cov(Xij1, Xij2)=0.5|j1−j2|.

The 1st, 4th, and 7th components of β are given by 3, 1.5, and 2 respectively. Other com-

ponents of β are to be fixed at 0.

Example 3 (Compound Symmetry). This is an example from Fan and Lv (2008) and Wang

(2009). By this structure, all predictors are equally correlated with each other. From the

example used by Fan and Lv (2008) with (n, p, p0)= (75, 5000, 3). Xi is generated such that

var(Xij) = 1 and var(Xij1, Xij2) = 0.5 for any j1 6= j2. The nonzero coefficients of β are

fixed to be 5.

Example 4 (A Challenging Case or Extreme Correlation) To further test the performance

of BE, we used the challenging example by H.Wang(2009) with (n, p, p0)= (300, 5000, 5)

and βj = 2j for every 1 ≤ j ≤ p0. They simulated independently Zi = (Zij) ∈ Rd and

Wi = (Wij) ∈ Rd from a standard multivariate normal distribution. Next they generated

Xj according to Xij = (Zij +Wij)/
√

2 for every 1 ≤ j ≤ p0 and Xij = (Zij +
∑p0
j′=1 Zij′)/2

for every p0 ≤ j ≤ p. According to the paper, a simple Monte Carlo computation reveals
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that the correlation coefficient of Xi1 and Yi is much smaller than that of Xij and Yi for

every j > p0; where Xij is an irrelevant predictor for every j > p0.

Example 5 (Normality Assumption) For linear regression, we mostly assume normality for

the error term, εi. To this end, the performance of the BE is tested against non-normally

distributed εi. Wang (2009) replicated Example 1 but with both Xij and εi generated

independently from a standardized exponential distribution, i.e., exp(1)-1.

4.3 Simulation Results

The simulation results are summarized in Tables 1-10. Based on this, we may draw the

following conclusions.

Considering Example 1 & 2:

From Tables 4.1 and 4.3, in the low signal-to-noise (i.e. Theoretical R2=30%) no method

performs well in terms of its ability to correctly select important variables aside the SIS

and the ISIS. The BE and FR have almost the same performance but the BE has a better

estimated model size and TPR as compared to the FR. Though the SIS and ISIS performs

well in correctly identifying true variables, this however is obtained by sacrificing a much

larger model size. We want to maintain a low FPR and the FDR but the SIS and the ISIS

have quite high FDR and FPR as compared to the BE. It is worth noting that for Table

4.3, the FDR for the ISIS and SIS is 91.9% which doesn’t serve our aim of maintaining a

low FDR.

From Tables 4.2, as the signal-to-noise increases (i.e.Theoretical R2=90% ), all the

methods perform well in terms of it’s ability to correctly identify relevant variables and

irrelevant ones. The BE method performs competitively with the other methods. The

BE method discovers 95% of important variables and 100% of unimportant variables under

Example 1. Also, the estimated Model size is 8.4 which is very similar to the predetermined

model size, 8. The BE method comparably maintains a low FDR of 8.6% and a FPR of 0,
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which is our aim. This is because the EBIC criteria which was used with the BE method

tightly controls FDR and incurs a small loss in the TPR (Chen & Chen, 2008).

From Table 4.4, increasing the signal-to-noise doesn’t change the perform of the SIS and

ISIS but significantly improves the TPR, the Model size and minimizes the FDR of the

BE. Considering Example 3 and 4:

From Table 4.5 and 4.7, the BE method as well as the FR doesn’t perform well especially

when there is extreme correlation between predictors (i.e. Table 4.7). However, the SIS

and ISIS performs better though the Model size is large and the FDR is large. From Table

4.6, the performance of the BE is pretty good in terms of the Model size and the FDR and

the performance of the SIS and ISIS remains unchanged under the Theoretical R2=90%.

It is noteworthy that, from Table 4.8, increasing the Theoretical R2 doesn’t significantly

improve the performance of the BE method. We can conclude that in the case of extreme

correlation, our BE method finds it difficult to identify true variables. The simulation

results for Example 5 is quite similar to the results of Example 1. This is because we

replicated Example 1 without the normality assumption of Xij and εi.

We are not claiming the BE as the only good method for variable screening though

it can very promising as compared with other variable screening methods reported in the

simulation studies.
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Table 4.1: Example 1: (n, d, d0)=(200,5000,8) and R2=30%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 30%

BE NONE 0.262 0.262 0.001 0.999 0.738 6.9 0.605

LASSO 0.262 0.262 0.001 0.999 0.738 6.9 0.605

SCAD 0.262 0.262 0.001 0.999 0.738 6.9 0.605

MCP 0.262 0.262 0.001 0.999 0.738 6.9 0.605

FR NONE 0.25 0.25 0.001 0.999 0.75 5.2 0.596

LASSO 0.25 0.25 0.001 0.999 0.75 5.2 0.596

SCAD 0.25 0.25 0.001 0.999 0.75 5.2 0.596

MCP 0.25 0.25 0.001 0.999 0.75 5.2 0.596

SIS LASSO 1 1 0.006 0.994 0 37 0.784

SCAD 1 1 0.006 0.994 0 37 0.784

MCP 1 1 0.006 0.994 0 37 0.784

ISIS LASSO 1 1 0.006 0.994 0 37 0.784

SCAD 1 1 0.006 0.994 0 37 0.784

MCP 1 1 0.006 0.994 0 37 0.784
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Table 4.2: Example 1: (n, d, d0)=(200,5000,8)and R2=90%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 90%

BE NONE 0.95 0.95 0 1 0.05 8.4 0.086

LASSO 0.95 0.95 0 1 0.05 8.4 0.086

SCAD 0.95 0.95 0 1 0.05 8.4 0.086

MCP 0.95 0.95 0 1 0.05 8.4 0.086

FR NONE 0.95 0.95 0 1 0.05 8.4 0.086

LASSO 0.95 0.95 0 1 0.05 8.4 0.086

SCAD 0.95 0.95 0 1 0.05 8.4 0.086

MCP 0.95 0.95 0 1 0.05 8.4 0.086

SIS LASSO 0.975 0.975 0.006 0.994 0.025 37 0.789

SCAD 0.938 0.938 0.006 0.994 0.062 37 0.797

MCP 0.925 0.925 0.006 0.994 0.075 37 0.8

ISIS LASSO 0.975 0.975 0.006 0.994 0.025 37 0.789

SCAD 0.938 0.938 0.006 0.994 0.062 37 0.797

MCP 0.925 0.925 0.006 0.994 0.075 37 0.8

Table 4.1 and 4.2, represents the simulation result for low signal-to-noise (i.e.,Theoretical

R2=30%) and high signal-to-noise (i.e.,Theoretical R2=90%). The BE method as well as

FR doesn’t perform well however increasing the signal-to-noise improves the performance

of these methods
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Table 4.3: Example 2: (n, d, d0)=(200,8000,3) and R2=30%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 30%

BE NONE 0.2 0.2 0 1 0.8 2.2 0.717

LASSO 0.2 0.2 0 1 0.8 2.2 0.717

SCAD 0.2 0.2 0 1 0.8 2.2 0.717

MCP 0.2 0.2 0 1 0.8 2.2 0.717

FR NONE 0.233 0.233 0 1 0.767 2.2 0.65

LASSO 0.233 0.233 0 1 0.767 2.2 0.65

SCAD 0.233 0.233 0 1 0.767 2.2 0.65

MCP 0.233 0.233 0 1 0.767 2.2 0.65

SIS LASSO 1 1 0.004 0.996 0 37 0.919

SCAD 1 1 0.004 0.996 0 37 0.919

MCP 1 1 0.004 0.996 0 37 0.919

ISIS LASSO 1 1 0.004 0.996 0 37 0.919

SCAD 1 1 0.004 0.996 0 37 0.919

MCP 1 1 0.004 0.996 0 37 0.919
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Table 4.4: Example 2: (n, d, d0)=(200,8000,3) and R2=90%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 90%

BE NONE 1 1 0 1 0 3.1 0.025

LASSO 1 1 0 1 0 3.1 0.025

SCAD 1 1 0 1 0 3.1 0.025

MCP 1 1 0 1 0 3.1 0.025

FR NONE 1 1 0 1 0 3.1 0.025

LASSO 1 1 0 1 0 3.1 0.025

SCAD 1 1 0 1 0 3.1 0.025

MCP 1 1 0 1 0 3.1 0.025

SIS LASSO 1 1 0.004 0.996 0 37 0.919

SCAD 1 1 0.004 0.996 0 37 0.919

MCP 1 1 0.004 0.996 0 37 0.919

ISIS LASSO 1 1 0.004 0.996 0 37 0.919

SCAD 1 1 0.004 0.996 0 37 0.919

MCP 1 1 0.004 0.996 0 37 0.919

Table 4.3 and 4.4, represents the simulation result for low signal-to-noise (i.e.,Theoretical

R2=30%) and high signal-to-noise (i.e.,Theoretical R2=90%). Similar to Example 1, in-

creasing the signal-to-noise improves the BE method’s performance.
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Table 4.5: Example 3: (n, d, d0)=(75,5000,3) and R2=30%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 30%

BE NONE 0.267 0.267 0.001 0.999 0.733 6.2 0.855

LASSO 0.267 0.267 0.001 0.999 0.733 6.2 0.855

SCAD 0.267 0.267 0.001 0.999 0.733 6.2 0.855

MCP 0.267 0.267 0.001 0.999 0.733 6.2 0.855

FR NONE 0.333 0.333 0.001 0.999 0.667 5.2 0.796

LASSO 0.333 0.333 0.001 0.999 0.667 5.2 0.796

SCAD 0.333 0.333 0.001 0.999 0.667 5.2 0.796

MCP 0.333 0.333 0.001 0.999 0.667 5.2 0.796

SIS LASSO 1 1 0.003 0.997 0 17 0.824

SCAD 1 1 0.003 0.997 0 17 0.824

MCP 1 1 0.003 0.997 0 17 0.824

ISIS LASSO 1 1 0.003 0.997 0 17 0.824

SCAD 1 1 0.003 0.997 0 17 0.824

MCP 1 1 0.003 0.997 0 17 0.824
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Table 4.6: Example 3 :(n, d, d0)=(75,5000,3) and R2=90%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 90%

BE NONE 1 1 0 1 0 3.5 0.115

LASSO 1 1 0 1 0 3.5 0.115

SCAD 1 1 0 1 0 3.5 0.115

MCP 1 1 0 1 0 3.5 0.115

FR NONE 1 1 0 1 0 3.7 0.155

LASSO 1 1 0 1 0 3.7 0.155

SCAD 1 1 0 1 0 3.7 0.155

MCP 1 1 0 1 0 3.7 0.155

SIS LASSO 1 1 0.003 0.997 0 17 0.824

SCAD 1 1 0.003 0.997 0 17 0.824

MCP 1 1 0.003 0.997 0 17 0.824

ISIS LASSO 1 1 0.003 0.997 0 17 0.824

SCAD 1 1 0.003 0.997 0 17 0.824

MCP 1 1 0.003 0.997 0 17 0.824

Tables 4.5 and 4.6 are the simulation results based on a low and high signal-to-noise.

Increasing the signal to noise improves the TPR, the Model size and minimizes the FDR

of the BE method.
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Table 4.7: Example 4: (n, d, d0)=(300,5000,5) and R2=30%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 30%

BE NONE 0.14 0.14 0 1 0.86 1.4 0.65

LASSO 0.14 0.14 0 1 0.86 1.7 0.5

SCAD 0.14 0.14 0 1 0.86 1.4 0.65

MCP 0.14 0.14 0 1 0.86 1.4 0.65

FR NONE 0.14 0.14 0 1 0.86 1.5 0.683

LASSO 0.14 0.14 0 1 0.86 1.8 0.533

SCAD 0.14 0.14 0 1 0.86 1.5 0.683

MCP 0.14 0.14 0 1 0.86 1.5 0.683

SIS LASSO 1 1 0.009 0.991 0 52 0.904

SCAD 1 1 0.009 0.991 0 52 0.904

MCP 1 1 0.009 0.991 0 52 0.904

ISIS LASSO 1 1 0.009 0.991 0 52 0.904

SCAD 1 1 0.009 0.991 0 52 0.904

MCP 1 1 0.009 0.991 0 52 0.904
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Table 4.8: Example 4: (n, d, d0)=(300,5000,5) and R2=90%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 90%

BE NONE 0.22 0.22 0 1 0.78 2.5 0.55

LASSO 0.22 0.22 0 1 0.78 2.5 0.55

SCAD 0.22 0.22 0 1 0.78 2.5 0.55

MCP 0.22 0.22 0 1 0.78 2.5 0.55

FR NONE 0.22 0.22 0 1 0.78 2.5 0.55

LASSO 0.22 0.22 0 1 0.78 2.5 0.55

SCAD 0.22 0.22 0 1 0.78 2.5 0.55

MCP 0.22 0.22 0 1 0.78 2.5 0.55

SIS LASSO 0.98 0.98 0.009 0.991 0.02 51.9 0.906

SCAD 0.9 0.9 0.009 0.991 0.1 51.9 0.913

MCP 0.92 0.92 0.009 0.991 0.08 51.9 0.911

ISIS LASSO 0.98 0.98 0.009 0.991 0.02 51.9 0.906

SCAD 0.9 0.9 0.009 0.991 0.1 51.9 0.913

MCP 0.92 0.92 0.009 0.991 0.08 51.9 0.911

From Table 4.1 and 4.2, In the case of extreme correlation, increasing the signal-to-noise

doesn’t improve on the performance of our method as well as the FR significantly. Our

method doesn’t perform well under this scenario.
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Table 4.9: Example 5: (n, d, d0)=(200,5000,8) and R2=30%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 30%

BE NONE 0.225 0.225 0.001 0.999 0.775 7.2 0.682

LASSO 0.225 0.225 0.001 0.999 0.775 7.2 0.682

SCAD 0.225 0.225 0.001 0.999 0.775 7.2 0.682

MCP 0.225 0.225 0.001 0.999 0.775 7.2 0.682

FR NONE 0.225 0.225 0.001 0.999 0.775 4.3 0.553

LASSO 0.225 0.225 0.001 0.999 0.775 4.3 0.553

SCAD 0.225 0.225 0.001 0.999 0.775 4.3 0.553

MCP 0.225 0.225 0.001 0.999 0.775 4.3 0.553

SIS LASSO 1 1 0.006 0.994 0 37 0.784

SCAD 1 1 0.006 0.994 0 37 0.784

MCP 1 1 0.006 0.994 0 37 0.784

ISIS LASSO 1 1 0.006 0.994 0 37 0.784

SCAD 1 1 0.006 0.994 0 37 0.784

MCP 1 1 0.006 0.994 0 37 0.784
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Table 4.10: Example 5: (n, d, d0)=(200,5000,8) and R2=90%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 90%

BE NONE 0.975 0.975 0 1 0.025 8.4 0.065

LASSO 0.975 0.975 0 1 0.025 8.4 0.065

SCAD 0.975 0.975 0 1 0.025 8.4 0.065

MCP 0.975 0.975 0 1 0.025 8.4 0.065

FR NONE 0.975 0.975 0 1 0.025 8.4 0.065

LASSO 0.975 0.975 0 1 0.025 8.4 0.065

SCAD 0.975 0.975 0 1 0.025 8.4 0.065

MCP 0.975 0.975 0 1 0.025 8.4 0.065

SIS LASSO 1 1 0.006 0.994 0 37 0.784

SCAD 0.975 0.975 0.006 0.994 0.025 37 0.789

MCP 0.962 0.962 0.006 0.994 0.038 37 0.792

ISIS LASSO 1 1 0.006 0.994 0 37 0.784

SCAD 0.975 0.975 0.006 0.994 0.025 37 0.789

MCP 0.962 0.962 0.006 0.994 0.038 37 0.792

Tables 4.9 and 4.10 is quite similar to Tables 4.1 and 4.2. This is because Example 1

was replicated however under different conditions.
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4.4 Real Data Application

The modified BE method was used to classify cancer samples as well as for gene selec-

tion for 3 types of cancer. Gene expression data used in this work were retrieved from

Gene Expression Omnibus (GEO). Three types of common cancers including colon cancer,

prostate cancer, and leukemia were selected and the raw data were downloaded. These

gene expression data sets are described below:

Colon cancer (GSE44861) : This data set included 111 samples and 22277 genes that data

were divided into 2 groups of 55 control and 56 cancer samples.

Prostate cancer (GSE71783) : This data set consisted of 30 samples and 17881 genes that

data were divided into 2 groups of 15 control and 15 cancer samples.

Leukemia (GSE9476): This dataset contained 64 samples and 22283 genes that data were

divided into 2 groups of 38 control and 26 cancer samples.

Table 4.11: The Number of Genes and Samples Used for the Considered Cancers

Data Set Gene Sample(+/-) Class

Colon Cancer 22277 111(56/55) No tumor/tumor

Prostate Cancer 17881 30(15/15) Normal/tumor

Leukemia 22283 64(26/38) Normal/leukemia

These data sets are examples of high dimensional data where the number of predictors,

p, is much greater than the number of observations, n. The data set is an already prepared

data set thus the gene expressions are normalized with no missing values.

In order to access the prediction accuracy, we employed all the methods used by the

BE method (i.e.BE-NONE,BE-LASSO,BE-SCAD,BE-MCP). We apply the entire data set

to the Modified BE algorithm and the screened variables in the sub-best model with the

minimum EBIC value becomes our final selected variables. We further apply these variables

to the shrinkage methods (LASSO, SCAD and MCP) used in the simulation study.
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The selected models are refitted via ordinary least squares for prediction purposes. We

evaluate the prediction accuracy by the Area Under the Receiver Operating Characteristic

curve (AUROC) which is simply a plot of the true positive rate (TPR) against the false

positive rate (FPR) at various threshold settings.

It is noteworthy that all methods (BE-NONE, LASSO, SCAD, MCP) selected the same

variables hence we report only these selected variables for the three data set.

Figure 1 shows the AUROC plots for the three data set. For the Colon data set:based

on BE, the LASSO, SCAD, and MCP identified 2 genes (Probe ID: 205697 at (SCGN),

206871 at (COL5A1)) as relevant. For the Prostate data set: based on BE, the LASSO,

SCAD, and MCP identified 3 genes (Probe ID: 2777714 (SNCA), 3145980 (HRSP12),

2363484(PPOX)) as important. For the Leukemia data set: based on BE, the LASSO,

SCAD, and MCP identified importance 1 gene (Probe ID: 210976 s at(PFKM)). From the

figure 4.1, the AUROC score is 0.932, 0.964 and 0.867 which shows a good prediction

accuracy of the proposed BE method. The AUC score, 0.867, reported for the Leukemia

data set is not surprising because a regression model with more than one variable improves

its prediction accuracy.
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Figure 4.1: AUROC plots of using the BE on Colon, Prostate and Leukemia data
sets, respectively.
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Tables 4.12, 4.13, and 4.14 show the gene set selected by the BE method for the different

data sets and its functions.

Table 4.12: Selected gene set from Leukemia Data by BE methods

Probe ID Gene Symbol Function

210976 s at PFKM Three phosphofructokinase isozymes exist in humans:

muscle, liver and platelet. These isozymes function as

subunits of the mammalian tetramer phosphofructoki-

nase, which catalyzes the phosphorylation of fructose-6-

phosphate to fructose-1,6-bisphosphate. Tetramer com-

position varies depending on tissue type. This gene en-

codes the muscle-type isozyme. Mutations in this gene

have been associated with glycogen storage disease type

VII, also known as Tarui disease.
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Table 4.13: Selected gene set from Colon Data by BE methods

Probe ID Gene Symbol Function

205697 at SCGN SCGN, also known as secretagogin, is a cytoplasmic pro-

tein that contains six EF-hand domains and is related to the

calicium-binding proteins Calretinin and Calbindin D28K.

This protein is thought to be involved in cell proliferation

and KCl (potassium chloride)-mediated calcium flux events.

Through its interaction with KCl and its subsequent ability

to modulate calcium storage pools within the cell, SCGN

may function to negatively control growth and differentia-

tion rates and, thus, indirectly inhibit cell replication. Re-

combinant SCGN protein, fused to His-tag at N-terminus,

was expressed in E.coli and purified by using conventional

chromatography techniques.

212489 at COL5A1 This gene encodes an alpha chain for one of the low abun-

dance fibrillar collagens. Fibrillar collagen molecules are

trimers that can be composed of one or more types of al-

pha chains. Type V collagen is found in tissues contain-

ing type I collagen and appears to regulate the assembly

of heterotypic fibers composed of both type I and type

V collagen. This gene product is closely related to type

XI collagen and it is possible that the collagen chains of

types V and XI constitute a single collagen type with tissue-

specific chain combinations. The encoded procollagen pro-

tein occurs commonly as the heterotrimer pro-alpha1(V)-

pro-alpha1(V)-pro-alpha2(V). Mutations in this gene are as-

sociated with Ehlers-Danlos syndrome, types I and II. Al-

ternative splicing of this gene results in multiple transcript

variants.
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Table 4.14: Selected gene set from Prostate Data by BE methods

Probe ID Gene Symbol Function

2777714 SNCA Alpha-synuclein is a member of the synuclein family, which

also includes beta and gamma synuclein. Among its related

pathways are transport to the Golgi and subsequent modifi-

cation and EGFR1 signaling pathway.

3145980 HRSP12 HRSP12, also called ribonuclease uK114, is an endoribonu-

clease found predominantly in human adult kidney and liver,

and which is responsible for inhibiting translation by cleav-

ing mRNA. This protein cleaves phosphodiester bonds only

in single-stranded RNA. It may be an important biomarker

for heptatic carcinoma. Recombinant human HRSP12 pro-

tein, fused to His-tag at N-terminus, was expressed in E.coli

and purified by using conventional chromatography.

2363484 PPOX This gene encodes the penultimate enzyme of heme biosyn-

thesis, which catalyzes the 6-electron oxidation of protopor-

phyrinogen IX to form protoporphyrin IX. Mutations in this

gene cause variegate porphyria, an autosomal dominant dis-

order of heme metabolism resulting from a deficiency in pro-

toporphyrinogen oxidase, an enzyme located on the inner mi-

tochondrial membrane. Alternatively spliced transcript vari-

ants encoding the same protein have been identified.
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Finally, we report on the boxplot of differentially expressed gene for normal and tumor

samples for all three data sets.

From figure 4.2a, the selected gene (SNCA) is under expressed in Cancer tumor samples

than normal samples. This means this gene is deactivated in cancer samples. The same

applies to the other selected genes. However, the expression levels are significantly dif-

ferentially expressed in figure 4.2a between normal and tumor cancer samples. Similarly,

from figure 4.3, gene ID 205697 at (SCGN) is lowly differentially expressed in tumor cancer

samples than for no tumor samples. However, the gene ID 212489 at (COL5A1) is over

expressed in colon cancer samples. This means it is highly activated in tumor samples.

Finally, for the Leukemia data set, the gene ID 210976 s at is overly-expressed in normal

samples than in leukemia samples.
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Figure 4.2: Box plot for comparing differentially expressed gene for Normal and
Tumor Prostate cancer samples

36



Figure 4.3: Box plot for comparing differentially expressed gene for No Tumor and
Tumor colon cancer samples
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Figure 4.4: Box plot for comparing differentially expressed gene for Normal and
Tumor Leukemia samples
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Chapter 5

Discussion and Conclusion

5.1 Summary

In genomic studies, we encounter a number of genes which is usually much larger than the

sample size. Biologically, only a small subset of these genes are related to a disease under

study. Most of the genes are unrelated and have noise which can greatly influence the

performance of classification. Therefore, choosing at least a minimal gene list is one of the

most important applications in the analysis of omic data, which are effective in complex

diseases. The essence of variable screening is to screen out these genes which might be

unrelated to the disease under study greatly reducing the dimensionality of the omic data.

These screened variables are further applied to various shrinkage methods to further select

those genes that are important or related the disease under study. The aim is to select

a subset of useful and appropriate genes to diagnose the disease among the whole genes.

This improves the accuracy of classification.

It has been shown extensively from numerical studies that the Modified BE algorithm

can be a very useful variable screening method to discover all relevant predictors, even if

the number of predictors is larger than the sample size. However, we do not claim the

Modified BE as the only good variable screening method. From the simulation studies,

we observed that the SIS and ISIS performed well under all conditions with a much larger

model size and FDR.

The aim of this study was to investigate the BE method as a variable screening in a high

dimensional set up with motivation from H.Wang’s (2009) FR paper and the performance

has been very encouraging especially under high signal-to-noise.
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5.2 Recommendations for Future Work

For recommendations for future work, we first of all address the limitations and strengths

of our proposed method and then we propose a possible solution as future work.

1. In the case of small n sample size, the BE selects a small subset of variables which

are consistent or the same across all methods used under BE thus BE-NONE, BE-LASSO,

BE-SCAD and BE-MCP.

We propose this method in the case of large n sample size (e.g. n=300,400, etc.). This

is because our proposed BE method can be a good method for filtering. In this case,

more variables will be selected in the screening stage and then further applied to various

shrinkage methods (LASSO, SCAD and MCP) for final selection.

2. The variables selected by the BE method cannot guarantee error control. Therefore as

future work, we wish to develop a methodology for our BE method with error control.
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Appendix

Simulation Results for Theoretical R2 = 60% The Tables for the simulation results based

on the Theoretical R2 = 60% are reported in the appendix.

Table 5.1: Example 1: (n, d, d0)=(200,5000,8) and R2=60%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 60%

BE NONE 0.788 0.788 0 1 0.212 8.4 0.221

LASSO 0.788 0.788 0 1 0.212 8.4 0.221

SCAD 0.788 0.788 0 1 0.212 8.4 0.221

MCP 0.788 0.788 0 1 0.212 8.4 0.221

FR NONE 0.762 0.762 0 1 0.238 8.1 0.24

LASSO 0.762 0.762 0 1 0.238 8.1 0.24

SCAD 0.762 0.762 0 1 0.238 8.1 0.24

MCP 0.762 0.762 0 1 0.238 8.1 0.24

SIS LASSO 0.988 0.988 0.006 0.994 0.012 37 0.786

SCAD 1 1 0.006 0.994 0 37 0.784

MCP 1 1 0.006 0.994 0 37 0.784

ISIS LASSO 0.988 0.988 0.006 0.994 0.012 37 0.786

SCAD 1 1 0.006 0.994 0 37 0.784

MCP 1 1 0.006 0.994 0 37 0.784
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Table 5.2: Example 2: (n, d, d0)=(200,8000,3) and R2=60%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 60%

BE NONE 0.867 0.867 0 1 0.133 3.2 0.183

LASSO 0.867 0.867 0 1 0.133 3.2 0.183

SCAD 0.867 0.867 0 1 0.133 3.2 0.183

MCP 0.867 0.867 0 1 0.133 3.2 0.183

FR NONE 0.8 0.8 0 1 0.2 3.2 0.242

LASSO 0.8 0.8 0 1 0.2 3.2 0.242

SCAD 0.8 0.8 0 1 0.2 3.2 0.242

MCP 0.8 0.8 0 1 0.2 3.2 0.242

SIS LASSO 1 1 0.004 0.996 0 37 0.919

SCAD 0.967 0.967 0.004 0.996 0.033 37 0.922

MCP 0.967 0.967 0.004 0.996 0.033 37 0.922

ISIS LASSO 1 1 0.004 0.996 0 37 0.919

SCAD 0.967 0.967 0.004 0.996 0.033 37 0.922

MCP 0.967 0.967 0.004 0.996 0.033 37 0.922
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Table 5.3: Example 3: (n, d, d0)=(75,5000,3) and R2=60%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 60%

BE NONE 0.667 0.667 0.001 0.999 0.333 5.7 0.633

LASSO 0.667 0.667 0.001 0.999 0.333 5.7 0.633

SCAD 0.667 0.667 0.001 0.999 0.333 5.7 0.633

MCP 0.667 0.667 0.001 0.999 0.333 5.7 0.633

FR NONE 0.7 0.7 0.001 0.999 0.3 5.1 0.568

LASSO 0.7 0.7 0.001 0.999 0.3 5.1 0.568

SCAD 0.7 0.7 0.001 0.999 0.3 5.1 0.568

MCP 0.7 0.7 0.001 0.999 0.3 5.1 0.568

SIS LASSO 1 1 0.003 0.997 0 17 0.824

SCAD 1 1 0.003 0.997 0 17 0.824

MCP 1 1 0.003 0.997 0 17 0.824

ISIS LASSO 1 1 0.003 0.997 0 17 0.824

SCAD 1 1 0.003 0.997 0 17 0.824

MCP 1 1 0.003 0.997 0 17 0.824
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Table 5.4: Example 4: (n, d, d0)=(300,5000,5) and R2=60%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 60%

BE NONE 0.18 0.18 0 1 0.82 2 0.583

LASSO 0.18 0.18 0 1 0.82 2.1 0.533

SCAD 0.18 0.18 0 1 0.82 2 0.583

MCP 0.18 0.18 0 1 0.82 2 0.583

FR NONE 0.18 0.18 0 1 0.82 2 0.583

LASSO 0.18 0.18 0 1 0.82 2.1 0.533

SCAD 0.18 0.18 0 1 0.82 2 0.583

MCP 0.18 0.18 0 1 0.82 2 0.583

SIS LASSO 0.98 0.98 0.009 0.991 0.02 52 0.906

SCAD 0.98 0.98 0.009 0.991 0.02 52 0.906

MCP 0.98 0.98 0.009 0.991 0.02 52 0.906

ISIS LASSO 0.98 0.98 0.009 0.991 0.02 52 0.906

SCAD 0.98 0.98 0.009 0.991 0.02 52 0.906

MCP 0.98 0.98 0.009 0.991 0.02 52 0.906
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Table 5.5: Example 5 : (n, d, d0)=(200,5000,8) and R2=60%

True False True False False

Screening Selection Coverage Positive Positive Negative Negative Model Discovery

Method Method Probability Rate (%) Rate (%) Rate (%) Rate (%) Size Rate (%)

Theoretical R2 = 60%

BE NONE 0.838 0.838 0 1 0.162 8.9 0.246

LASSO 0.838 0.838 0 1 0.162 8.9 0.246

SCAD 0.838 0.838 0 1 0.162 8.9 0.246

MCP 0.838 0.838 0 1 0.162 8.9 0.246

FR NONE 0.85 0.85 0 1 0.15 8.6 0.206

LASSO 0.85 0.85 0 1 0.15 8.6 0.206

SCAD 0.85 0.85 0 1 0.15 8.6 0.206

MCP 0.85 0.85 0 1 0.15 8.6 0.206

SIS LASSO 1 1 0.006 0.994 0 37 0.784

SCAD 1 1 0.006 0.994 0 37 0.784

MCP 1 1 0.006 0.994 0 37 0.784

ISIS LASSO 1 1 0.006 0.994 0 37 0.784

SCAD 1 1 0.006 0.994 0 37 0.784

MCP 1 1 0.006 0.994 0 37 0.784
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R Codes

################################################################

# SIMULATING FROM THE MULTIVARIATE NORMAL DISTRIBUTION WITH #

#MEAN 0 AND THE COVARIANCE MATRIX SPECIFIED USING SIX MODELS #

################################################################

#Variable selection method

####################################

# MODEL 1: INDEPENDENT PREDICTORS #

####################################

#Independent Predictors with standard multivariate normal distribution

library(MASS)

library(mvtnorm)

pred1=function(n,p)

{

set.seed(sample(1:1000000000,1))

s=diag(p)

predictors=rmvnorm(n,mean=rep(0,p),sigma=s,method="chol")

return (predictors)

}

#################################################################

# MODEL 2: COMPOUND SYMMETRY: PREDICTORS ARE EQUALLY CORRELATED #

# WITH CORRELATION SPECIFIED AS P=0.3,0.6 OR 0.9 #

#################################################################

#Compound Symmetry model

pred2=function(n,p,rho)
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{

set.seed(sample(1:1000000000,1))

s=diag(p)

s[lower.tri(s)]=s[upper.tri(s)]=rho

predictors=rmvnorm(n,mean=rep(0,p),sigma=s,method="chol")

return(predictors)

}

#################################################################

# MODEL 3: AUTOREGRESSIVE CORRELATION: THISCORRELATION STRUCTURE#

# ARISES WHEN THE PREDICTORS ARE NATURALLY ORDERED. #

# THE CORRELATION IS SPECIFIED AS P=0.3,0.6,0.9 #

#################################################################

#Autoregressive Correlation model

pred3=function(n,p)

{

set.seed(sample(1:1000000000,1))

s=diag(p)

#enter values in upper triangular

for(i in 1:ncol(s))

{

for(j in 1:nrow(s))

{

if (i==j)next

s[i,j]=0.5^(abs(i-j))

}

}

predictors=rmvnorm(n,mean=rep(0,p),sigma=s,method="chol")

return(predictors)
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}

##################################################################

#MODEL 4:A CHALLENGING CASE #

##################################################################

#Challenging case

pred4=function(n,p)

{

set.seed(sample(1:1000000000,1))

w=matrix(rnorm(n*5),nrow=n,ncol=5)

z=matrix(rnorm(n*5),nrow=n,ncol=5)

x=(z+w)/sqrt(2)

x1=matrix(NA,nrow=n,ncol=(p-5))

sw=apply(w,1,sum)

for(i in 1:(p-5))

{

tmp.z=(rnorm(n)+sw)/2

x1[,i]=tmp.z

}

predictors=cbind(x,x1)

return(predictors)

}

############################################################

#MODEL 5: NORMALITY ASSUMPTION ##

############################################################

#Predictors with standard exponential distribution

#(p,n,p0)=(10000,200,8)

library(stats)

pred5=function(n,p)
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{

set.seed(sample(1:1000000000,1))

sds=1

predictors=matrix(rexp(n*p,sds),nrow=n,ncol=p)

return (predictors)

}

############################################################

#MODEL 6: DIVERGING MODEL SIZE ##

############################################################

#Predictors with standard exponential distribution

#(p,n,p0)=(10000,sqrt(n))where n=200,400 and 800

# pred6=function(n,p)

# {

# set.seed(sample(1:1000000000,1))

# s=diag(p)

# predictors=rmvnorm(n,mean=rep(0,p),sigma=s,method="chol")

# return (predictors)

# }

#Generate beta for those variables

#beta_i=(-1)^ui*(|N(0,1)|+4log (n)/sqrt(n)),where ui~Ber(0.4)

library(LaplacesDemon)

pred1_beta=function(n,nsp)

{

ui=rbinom(nsp,size=c(0,1),prob=0.4) #nsp is the number of true variables

rn=rnorm(nsp)

betas=((-1)^(ui))*(abs(rn)+((4*log(n))/sqrt(n)))

return(betas)
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}

pred5_beta=function(n,nsp)

{

beta=NULL

ui=rbinom(nsp,size=c(0,1),prob=0.4)

rn=rnorm(nsp)

betas=((-1)^(ui))*(abs(rn)+((4*log(n))/sqrt(n)))

return(betas)

}

# library(stats)

# pred6_beta=function(n,nsp) #The number of significant predictors(nsp)

# {

# beta=NULL

# ui=rbinom(nsp,size=c(0,1),prob=0.4)

# rn=rnorm(nsp)

# betas=((-1)^(ui))*(abs(rn)+((4*log(n))/sqrt(n)))

# return(betas)

# }

###ERROR

#Calculating the error based on the variance of X%*%(betas)

#and R-squared(signal-to-noise)

error1=function(n,x,betas,R2)

{

set.seed(sample(1:1000000000,1))

sd.pred=sqrt((var(x%*%(betas))/R2)-var(x%*%(betas)))
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error=rnorm(n,mean=0,sd=sd.pred)

return(error)

}

#The function below is not generating the data and because of this, i can’t check

#the other functions are working since it depends on the data.

#the error message below is what i get when i try to work it out:

#Error in data_generation(options = "pred1", R2 = 0.3, rho = 0) :

#dims [product 200] do not match the length of object [1000]

#In addition: Warning messages:

# 1: In var(x %*% (betas))/R2 :

# Recycling array of length 1 in array-vector arithmetic is deprecated.

#Use c() or as.vector() instead.

#2: In (var(x %*% (betas))/R2) - var(x %*% (betas)) :

# Recycling array of length 1 in vector-array arithmetic is deprecated.

#Use c() or as.vector() instead.

##Combining all the examples

data_generation = function(options,R2)

{

if(options=="pred1")

{

n=200;p=5000;ntv=8

gamm = 1 # for EBIC arguments gamm>=0

betas=pred1_beta(n,nsp=ntv)

#true variable name
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indx=1:ntv

true.v=paste("X",indx,sep="")

x=pred1(n,p)

error=error1(n,x[,indx],betas,R2)

y=as.matrix(x[,indx])%*%as.matrix(betas)+error

}

if(options=="pred2")

{

#2.Case of pred2: Compound Symmetry

# 3 important variables to be selected

n=200;p=8000;rho=0.5;ntv=3

gamm = 1

betas=rep(5,ntv)

rho=0.5

#generate indexes of true vairable in vector

indx=1:ntv

true.v=paste("X",indx,sep="")

x=pred2(n,p,rho)

#sigma=1

error=error1(n,x[,indx],betas,R2)

y=as.matrix(x[,indx])%*%as.matrix(betas)+error

}

if(options=="pred3")

{

#3. Case of pred3: Autoregressive Correlation

#3 important variables to be selected

n=75;p=5000;ntv=3

gamm = 1
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betas=c(3,1.5,2)

#generate indexes of true vairable in vector

indx=1:ntv

true.v=paste("X",indx,sep="")

x=pred3(n,p)

error=error1(n,x[,indx],betas,R2)

y=as.matrix(x[,indx])%*%as.matrix(betas)+error

}

if(options=="pred4")

{

n=300;p=5000;ntv=5

gamm = 1

betas = 2*(1:5)

#generate indexes of true vairable in vector

indx=1:ntv

true.v=paste("X",indx,sep="")

x=pred4(n,p)

error=error1(n,x[,indx],betas,R2)

y=as.matrix(x[,indx])%*%as.matrix(betas)+error

}

if(options=="pred5")

{

n=200;p=5000;ntv=8

gamm = 1

betas = pred5_beta(n,ntv);

#generate indexes of true vairable in vector

indx=1:ntv
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true.v=paste("X",indx,sep="")

x=pred5(n,p)

error=error1(n,x[,indx],betas,R2)

y=as.matrix(x[,indx])%*%as.matrix(betas)+error

}

# if(options=="pred6")

# {

# n=200;p=5000; ntv=as.integer(sqrt(n))

# gamm = 1;R2=0.75

# betas = pred6_beta(n,ntv);

# #generate indexes of true vairable in vector

# indx=1:ntv

# true.v=paste("X",indx,sep="")

# x=pred6(n,p)

# #sigma=1

# error=error1(n,x[,indx],betas,R2)

# y=as.matrix(x[,indx])%*%as.matrix(betas)+error

# }

#name of column

colnames(x)=paste("X",1:ncol(x),sep="")

return(list(x,y,true.v))

}

###################################

########################################### SignifReg()

#install.packages("SignifReg")

library(SignifReg)

backward_elimination = function(x,y,gamm)
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{

n = nrow(x)

newX=data.frame(y,x)

fullmodel <- lm(y ~ ., data =newX)

# add log(n)+2*gamm*log(ncol(X)) -> EBIC

model=step(fullmodel, direction ="backward",

k=log(n)+2*gamm*log(ncol(x)),trace=FALSE )

#model=names(model$coefficients)[-c(1)]

return(model)

}

forward_selection = function(x,y,gamm)

{

n = nrow(x)

newX=data.frame(y,x)

fit.null <- lm(y ~ 1, data=newX)

fullmodel <- lm(y ~ ., data=newX)

model=step(fit.null,scope=list(lower=fit.null, upper=fullmodel),

direction = "forward", k=log(n)+2*gamm*log(ncol(x)),trace=FALSE )

#model=names(model$coefficients)[-c(1)]

return(model)

}

model_selection = function(x,y,option,gamm)

{

n = nrow(x)

idx2 = seq(as.integer(n/log(n)),n,by = (as.integer(n/log(n))))
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if(idx2[length(idx2)]!=n)idx2 = c(idx2,n)

idx1 = c(1,(idx2+1))

idx1=idx1[-length(idx1)]

xmat = list()

idx=NULL

scope1 = y~.

for(i in 1:length(idx2))

{

if(length(idx)>0)

{

if(option=="FWER")

{

tmp.model = SignifReg(scope1,data=data.frame(y,x[,c(idx,idx1[i]:idx2[i])]),

alpha=0.05,direction="forward",

criterion="p-value",correction="Bonf")

}

if(option=="backward")

{

tmp.model = backward_elimination(x[,c(idx,idx1[i]:idx2[i])],y,gamm)

}

if(option=="forward")

{

tmp.model = forward_selection(x[,c(idx,idx1[i]:idx2[i])],y,gamm)

}

}

if(length(idx)==0)

{

if(option=="FWER")
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{

tmp.model = SignifReg(scope=scope1,data=data.frame(y,x[,c(idx1[i]:idx2[i])]),

alpha=0.05,direction="backward",

criterion="p-value",correction="Bonf")

}

if(option=="backward")

{

tmp.model = backward_elimination(x[,(idx1[i]:idx2[i])],y,gamm)

}

if(option=="forward")

{

tmp.model = forward_selection(x[,c(idx1[i]:idx2[i])],y,gamm)

}

}

if(dim(coef(summary(tmp.model)))[1]>1) # if there is any siginficant variable

{

xmat = as.character(names(tmp.model$coefficients)[-c(1)])

idx = match(xmat,colnames(x))

}

if(length(idx)==(n-1)) break;

}

# return final slected variables names

return(colnames(x)[idx]) ################################################ Changed

}

fwd.bwd.bonf.SIS.method=function(bnf,bd,fd,x,y) #x is matrix

{
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#set of backward

idx = match(bd,colnames(x))

bwd.newX = as.matrix(x[,idx])

#set of forward

idx = match(fd,colnames(x))

fwd.newX = as.matrix(x[,idx])

#set of bonferroni

idx = match(bnf,colnames(x))

bnf.newX = as.matrix(x[,idx])

n = nrow(x)

# SIS with forward

fwd.lasso.fit = SIS(fwd.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="lasso")

fwd.scad.fit = SIS(fwd.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="SCAD")

fwd.mcp.fit = SIS(fwd.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="MCP")

#The vector of indices selected by (I)SIS.

fwd.lasso.names = fd[fwd.lasso.fit$ix]

fwd.scad.names = fd[fwd.scad.fit$ix]

fwd.mcp.names = fd[fwd.mcp.fit$ix]

# SIS with backward

bwd.lasso.fit = SIS(bwd.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="lasso")

bwd.scad.fit = SIS(bwd.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="SCAD")

bwd.mcp.fit = SIS(bwd.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="MCP")

#The vector of indices selected by (I)SIS.

bwd.lasso.names = bd[bwd.lasso.fit$ix]

bwd.scad.names = bd[bwd.scad.fit$ix]

bwd.mcp.names = bd[bwd.mcp.fit$ix]
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# SIS with p.reg

bnf.lasso.fit = SIS(bnf.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="lasso")

bnf.scad.fit = SIS(bnf.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="SCAD")

bnf.mcp.fit = SIS(bnf.newX,y,family="gaussian",nsis = as.integer(n/log(n)),iter=FALSE,penalty="MCP")

#The vector of indices selected by (I)SIS.

bnf.lasso.names = bnf[bnf.lasso.fit$ix]

bnf.scad.names = bnf[bnf.scad.fit$ix]

bnf.mcp.names = bnf[bnf.mcp.fit$ix]

# return variable names for fwd lasso, scad,mcp

# bwd

# bonf

result = list(fwd.lasso = fwd.lasso.names,fwd.scad = fwd.scad.names,fwd.mcp=fwd.mcp.names,

bwd.lasso = bwd.lasso.names,bwd.scad = bwd.scad.names,bwd.mcp=bwd.mcp.names,

bnf.lasso = bnf.lasso.names,bnf.scad = bnf.scad.names,bnf.mcp=fwd.mcp.names)

return(result)

}

performance.sim = function(true.v,select.v,total.p)

{

# Coverage Probability: (1/num.simulation)*sum(I(S(k) includes all true variables))

# True Negative, False Negative

# True Positive, False Positive

# FDR and its confidence error)

# Correctly Fitted: (1/num.simulation)*sum(I(S(k) == True Model))

# Average Model Size
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# visualize EBIC : boxplots

#idx = match(true.v,select.v) # return 1 if true, 0 otherwise

CP = length(intersect(true.v,select.v))/length(true.v) #as.numeric(sum(idx>0,na.rm=T) == length(idx))

TP = length(intersect(true.v,select.v))

FP = length(setdiff(select.v,true.v))#False positive

TN =(total.p-length(true.v)-length(setdiff(select.v,true.v)))

FN = length(setdiff(true.v,select.v))

TPR = TP/(TP+FN)

FPR=FP/(FP+TN)

TNR=TN/(FP+TN)

FNR=1-TPR

RP = length(select.v) # model size

FDR = FP/length(select.v) #False discovery rate

result = list(Coverage.Prob=CP,

TPR = TPR,

FPR=FPR,

TNR=TNR,

FNR=FNR,

Model.Size = RP,

FDR = FDR)

return(result)

}

add.result = function(a1,tmp,itr)

{

# make list in the first simulation

if(itr==1){a1=list()}

# store each value into each category
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a1$Coverage.Prob = c(a1$Coverage.Prob,tmp$Coverage.Prob)

a1$TPR = c(a1$TPR,tmp$TPR)

a1$FPR = c(a1$FPR,tmp$FPR)

a1$TNR = c(a1$TNR,tmp$TNR)

a1$FNR = c(a1$FNR,tmp$FNR)

a1$Model.Size = c(a1$Model.Size,tmp$Model.Size)

a1$FDR = c(a1$FDR,tmp$FDR)

return(a1)

}

###########################

#Examples

library(ncvreg)

library(SIS)

library(glmnet)

library(mvtnorm)

options=c("pred1","pred2","pred3","pred4","pred5","pred6")

gamm = 1

Beg=Sys.time()

result = NULL

for (k in options){

if (k=="pred1"){true.v=paste("X",1:8,sep="");ntv=8;rho1=0;}

if (k=="pred2"){true.v = paste("X",c(1,4,7),sep="");ntv=3;rho1=R2;}

if (k=="pred3"){true.v = paste("X",1:3,sep="");ntv=3;rho1=R2;}

if (k=="pred4"){true.v = paste("X",1:5,sep="");ntv=5;rho1=R2;}

if (k=="pred5"){true.v = paste("X",1:8,sep="");ntv=8;rho1=R2;}

#if (k=="pred6"){true.v = paste("X",1:as.integer(sqrt(n)),sep="");ntv=as.integer(sqrt(n));rho1=0.75;}
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## Initialize all variables for results with empty set

bd1=fd1=bnf1=NULL

SIS.fwd.lasso=SIS.fwd.scad=SIS.fwd.mcp=NULL

SIS.bwd.lasso =SIS.bwd.scad =SIS.bwd.mcp =NULL

SIS.bnf.lasso = SIS.bnf.scad = SIS.bnf.mcp = NULL

SIS.lasso1=SIS.scad1=SIS.mcp1 = NULL

ISIS.lasso1=ISIS.scad1=ISIS.mcp1 = NULL

for(j in 1:rept)

{

set.seed(j)

data_final=data_generation(options=k,R2)

x = data_final[[1]]

y = data_final[[2]]

true.v = data_final[[3]]

#ranking variables with correlation from largest to smallest

p.value = apply(x,2,function(x)cor.test(x,y)$p.value)

order.idx = order(p.value,decreasing = F)

# rank with respect to p values

x = x[,order.idx]

#backward only with (n-2) variables

bd = model_selection(x,y,option="backward",gamm)
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#forward only with (n-2) variables

fd = model_selection(x,y,option="forward",gamm)

#p value based (Bonf) model selection

bnf = model_selection(x,y,option="FWER",gamm)

#########################################################

# LASSO and SCAD based on SIS (choose n/log(n))

fit.SIS.shrinkage = fwd.bwd.bonf.SIS.method(bnf,bd,fd,x,y)

# shrinkage methods with forward

fwd.lasso.names = fit.SIS.shrinkage$fwd.lasso

fwd.scad.names = fit.SIS.shrinkage$fwd.scad

fwd.mcp.names = fit.SIS.shrinkage$fwd.mcp

# shrinkage methods with backward

bwd.lasso.names = fit.SIS.shrinkage$bwd.lasso

bwd.scad.names = fit.SIS.shrinkage$bwd.scad

bwd.mcp.names = fit.SIS.shrinkage$bwd.mcp

# shrinkage methods with backward

bnf.lasso.names = fit.SIS.shrinkage$bnf.lasso

bnf.scad.names = fit.SIS.shrinkage$bnf.scad

bnf.mcp.names = fit.SIS.shrinkage$bnf.mcp

##########################################################

#ISIS - lasso and scad: names(lasso$coef.est)[-1] (selected variables)

n = nrow(x)

fit.ISIS.scad = SIS(as.matrix(x),y,family="gaussian",penalty="SCAD",tune="ebic",
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nfolds=10,type.measure="deviance",gamma.ebic=1,nsis = as.integer(n/log(n)),

iter.max=as.integer(log(n)-1),standardize=TRUE)

fit.ISIS.mcp = SIS(as.matrix(x),y,family="gaussian",penalty="MCP",tune="ebic",

nfolds=10,type.measure="deviance",gamma.ebic=1,nsis = as.integer(n/log(n)),

iter.max=as.integer(log(n)-1),standardize=TRUE)

fit.ISIS.lasso = SIS(as.matrix(x),y,family="gaussian",penalty="lasso",tune="ebic",

nfolds=10,type.measure="deviance",gamma.ebic=1 ,nsis = as.integer(n/log(n)),

iter.max=as.integer(log(n)-1),standardize=TRUE)

# dat = read.csv("result_1_.csv"dat = read.csv("result_1_.csv"dat =

#read.csv("result_1_.csv"dat = read.csv("result_1_.csv"find selected variables

ISIS.lasso.names = names(fit.ISIS.lasso$coef.est)[-1]

ISIS.scad.names = names(fit.ISIS.scad$coef.est)[-1]

ISIS.mcp.names = names(fit.ISIS.mcp$coef.est)[-1]

# SIS - lasso and scad :

#iter=FALSE -> one time of SIS with n/log(n)

fit.SIS.scad = SIS(as.matrix(x),y,family="gaussian",penalty="SCAD",tune="ebic",

nfolds=10,type.measure="deviance",gamma.ebic=1,nsis=as.integer(n/log(n)),

iter=FALSE,standardize=TRUE)

fit.SIS.mcp = SIS(as.matrix(x),y,family="gaussian",penalty="MCP",tune="ebic",

nfolds=10,type.measure="deviance",gamma.ebic=1,nsis=as.integer(n/log(n)),

iter=FALSE,standardize=TRUE)

fit.SIS.lasso = SIS(as.matrix(x),y,family="gaussian",penalty="lasso",tune="ebic",

nfolds=10,type.measure="deviance",gamma.ebic=1 ,nsis=as.integer(n/log(n)),

iter=FALSE,standardize=TRUE)
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SIS.lasso.names = names(fit.ISIS.lasso$coef.est)[-1]

SIS.scad.names = names(fit.ISIS.scad$coef.est)[-1]

SIS.mcp.names = names(fit.ISIS.mcp$coef.est)[-1]

################### result ###################

# Coverage Probability: (1/num.simulation)*sum(I(S(k) includes all true variables))

# True Negative, False Negative

# True Positive, False Positive

# FDR and its confidence error)

# Correctly Fitted: (1/num.simulation)*sum(I(S(k) == True Model))

# Average Model Size

# visualize EBIC : boxplots

p = ncol(x)

# variable selection methods only

tmp.bd1 = performance.sim(true.v,bd,p)

tmp.fd1 = performance.sim(true.v,fd,p)

tmp.bnf1 = performance.sim(true.v,bnf,p)

# SIS with variable slection methods

tmp.SIS.fwd.lasso = performance.sim(true.v,fwd.lasso.names,p)

tmp.SIS.fwd.scad = performance.sim(true.v,fwd.scad.names,p)

tmp.SIS.fwd.mcp = performance.sim(true.v,fwd.mcp.names,p)

tmp.SIS.bwd.lasso = performance.sim(true.v,bwd.lasso.names,p)

tmp.SIS.bwd.scad = performance.sim(true.v,bwd.scad.names,p)

tmp.SIS.bwd.mcp = performance.sim(true.v,bwd.mcp.names,p)
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tmp.SIS.bnf.lasso = performance.sim(true.v,bnf.lasso.names,p)

tmp.SIS.bnf.scad = performance.sim(true.v,bnf.scad.names,p)

tmp.SIS.bnf.mcp = performance.sim(true.v,bnf.mcp.names,p)

##################

tmp.SIS.lasso1 = performance.sim(true.v,SIS.lasso.names,p)

tmp.SIS.scad1 = performance.sim(true.v,SIS.scad.names,p)

tmp.SIS.mcp1 = performance.sim(true.v,SIS.mcp.names,p)

tmp.ISIS.lasso1 = performance.sim(true.v,ISIS.lasso.names,p)

tmp.ISIS.scad1 = performance.sim(true.v,ISIS.scad.names,p)

tmp.ISIS.mcp1 = performance.sim(true.v,ISIS.mcp.names,p)

# store each value into lists

bd1 = add.result(bd1,tmp.bd1,j)

fd1 = add.result(fd1,tmp.fd1,j)

bnf1 = add.result(bnf1,tmp.bnf1,j)

##############################################################

SIS.fwd.lasso = add.result(SIS.fwd.lasso,tmp.SIS.fwd.lasso,j)

SIS.fwd.scad = add.result(SIS.fwd.scad,tmp.SIS.fwd.scad,j)

SIS.fwd.mcp = add.result(SIS.fwd.mcp,tmp.SIS.fwd.mcp,j)

###############################################################

SIS.bwd.lasso = add.result(SIS.bwd.lasso,tmp.SIS.bwd.lasso,j)

SIS.bwd.scad = add.result(SIS.bwd.scad,tmp.SIS.bwd.scad,j)

SIS.bwd.mcp = add.result(SIS.bwd.mcp,tmp.SIS.bwd.mcp,j)

##############################################################

SIS.bnf.lasso = add.result(SIS.bnf.lasso,tmp.SIS.bnf.lasso,j)

SIS.bnf.scad = add.result(SIS.bnf.scad,tmp.SIS.bnf.scad,j)

SIS.bnf.mcp = add.result(SIS.bnf.mcp,tmp.SIS.bnf.mcp,j)
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##############################################################

SIS.lasso1 = add.result(SIS.lasso1,tmp.SIS.lasso1,j)

SIS.scad1 = add.result(SIS.scad1,tmp.SIS.scad1,j)

SIS.mcp1 = add.result(SIS.mcp1,tmp.SIS.mcp1,j)

######################################## ######################

ISIS.lasso1 = add.result(ISIS.lasso1,tmp.ISIS.lasso1,j)

ISIS.scad1 = add.result(ISIS.scad1,tmp.ISIS.scad1,j)

ISIS.mcp1 = add.result(ISIS.mcp1,tmp.ISIS.mcp1,j)

}

result = c(result,list(bd1,fd1,bnf1,

SIS.fwd.lasso,

SIS.fwd.scad,

SIS.fwd.mcp,

SIS.bwd.lasso,

SIS.bwd.scad,

SIS.bwd.mcp,

SIS.bnf.lasso,

SIS.bnf.scad,

SIS.bnf.mcp,

SIS.lasso1,

SIS.scad1,

SIS.mcp1,

ISIS.lasso1,

ISIS.scad1,

ISIS.mcp1))

}

Sys.time() - Beg
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# result dimension is 60 by ???

file.name = paste("result",indx,".csv",sep="_")

write.csv(result,file.name,row.names=F)
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