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Chapter 1: Introduction 

Research interest in low dimensional magnetic systems is mainly due to the fact that they 

provide unique possibilities to realize novel magnetic ground states, magnetic excitations, 

possible new phases of magnetic matter incorporating the interplay of quantum and thermal 

fluctuations. The magnetic properties of low-dimensional spin systems are strongly dependent on 

S (spin) of the electron as well as on the existence of single-ion anisotropy, along with the 

physics brought about by dimensionality of the crystal structure. Control of magnetic order in 

low-dimensional systems can be important milestone for the nanoelectronics and spintronics. It 

is difficult to realize long-range magnetic order in low dimensional bulk magnetic systems as it 

is suppressed by the thermal fluctuation. The Mermin Wagner theorem prohibits the formation of 

a long-range order in bulk spin systems of reduced dimensionality  [1]. There are several 1D and 

2D spin systems that are interesting from the perspective of low-dimensionality. In the present 

thesis, we discuss the physics of a class of compounds called trirutiles of general formula 

MTa2O6 (M = transition metal) where the lattice formed by M can be treated as a square net of 

spins. The M lattice could also be perceived as a chain of spins aligned along a certain 

crystallographic axis. The trirutile structure of MTa2O6 is derived from the rutile (TiO2) 

structure. In rutile structure, each cation, Ti+, is surrounded by 6 oxygen ions, O-2, which forms 

an octahedral environment. The metal cation in a trirutile has the same basic structure as rutile, 

but the cations will order in such a way to triple the c-axis. Trirutile compounds crystallize in the 

space group P42/mnm, space group number 136  [2]. Since the present thesis deals with the 

trirutile CoTa2O6, a schematic of the crystal structure is presented in Figure 1.1. In the figure, the 

crystal structure composed of CoO6 and TaO6 octahedra are shown in blue and grey colored 



 2 

octahedra. The low dimensional nature (in this case, 2D) of the Co network of spins is presented 

in the figure where the square net of Co atoms are shown. 

Some of the earliest studies on CoTa2O6 and related MTa2O6 (M = Co, Ni, Fe) 

investigated the specific heat and approximated it to the theoretical case of Ising spins on a 

square net  [3]. These works identified an antiferromagnetic transition (TN) at 6.67 K for 

CoTa2O6. As a comparison, the TN for FeTa2O6 was 8.1 K. The specific heat of MTa2O6 were 

analyzed in terms of the Ising square net and exchange constant (J) were determined. This early 

work itself had identified the presence of short-range spin fluctuations, by analyzing the 

magnetic entropy in the specific heat, present at temperatures greater than the transition 

temperatures. The work by Kremer et al [3] attains importance as it corrected an error in the 

previous work on MTa2O6 where the transition temperature of CoTa2O6 was wrongly estimated 

as at 35 K  [4]. 

 

Figure 1.1 (Left) The crystal structure of CoTa2O6, showing the CoO6 and TaO6 octahedra in 

blue and gray colour, respectively. The oxygen atoms that form the octahedra are 

shown as red spheres, (Right) Represents the square planar structure of Co magnetic 

lattice. The Co atoms are shown as blue spheres. The structure diagrams were 

created using the software Vesta  [5] 
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Recent work on MTa2O6 looked at the magnetic properties of single crystals along 

specific crystallographic directions, keeping in mind the role played by anisotropy [6]. 

Interesting magnetic properties were found in NiTa2O6, 

CuSb2O6 and CoSb2O6 [7] [8] [6]. The magnetism of 

trirutiles were explained based on the presence of two 

antiferromagnetic sublattices oriented at 90 degrees to 

each other  [6].  This had the direct consequence that 

the application of external magnetic field produced two 

transitions instead of one.  The compound was also 

seen to display moderate magnetocaloric effect. 

Interestingly, competing effects arising from 

antiferromagnetic (Neel), spin liquid and dimers were 

proposed in CoSb2O6  [6].  

Figure 1.2: (Left) The specific heat of CuSb2O6, NiTa2O6 and CoSb2O6 were seen to display 

anisotropic effects in the presence of external magnetic field  [6]. (Right) A single 

crystal of CoTa2O6 was demonstrated as displaying optical dichroism [9]. 

The magnetism of Ta-based trirutile single crystals were studied recently  [9]. This study 

confirmed the TN = 6.12 K for CoTa2O6. Anisotropy effects in magnetic susceptibility were 

clearly visible. Once again, the anisotropic effect of magnetic field on magnetic phase transitions 

and the consequent magnetocaloric effect was documented in this work.  
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The observation of sublattice effects and magnetocaloric effect implied a strong coupling 

between the spins and the lattice in this class of materials. This was indeed the case as observed 

in experimental investigations involving the study 

of thermal expansion  [10].  Significant 

suppression of the thermal conductivity was 

observed along all the crystallographic directions 

in the case of Ta-based compounds as opposed to 

the Sb-based compounds. The experimental 

thermal conductivity data was explained based on 

resonant scattering of phonons in a two-level 

system with an energy splitting of the order of 100- 

150 K. This was attributed to the presence of a 

lower optic phonon mode in the Ta-based trirutiles. 

Figure 1.3: The magnetocaloric effect observed in CoTa2O6 and FeTa2O6. Note that this is an 

anisotropic effect observed due to magnetic field being applied along different 

crystallographic directions  [6]. 

The CoTa2O6-FeTa2O6 phase diagram of mixtures were investigated using X-ray and 

neutron scattering and magnetization studies to identify a bicritical region in the x-T phase 

diagram ( here, x is the concentration of Co in the formula Fe1-xCoxTa2O6)  [11]. For the Co-rich 

part of the phase diagram, all the compositions showed a magnetic structure with the propagation 

vector (±
1

4

1

4

1

4
). The bicritical region in the x-T phase diagram occurs at x = 0.46 and T = 4.9 K. 

The origin for the bicritical phase diagram was attributed to the competing magnetic and 

crystallographic structures. Another neutron diffraction report states that the magnetic moments 

of CoTa2O6 entirely lie on the Co-planes having propagation vector (±
1

4

1

4

1

4
) which leads to two-
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dimensional magnetic structure [2]. Despite these efforts to study the magnetic structure of 

CoTa2O6 to understand the low dimensional magnetism, anisotropic exchange interactions that 

respond differently in external magnetic field and the magnetocaloric effect, the results presented 

in the aforementioned papers do not seem trustworthy or complete. In the work by Kiast et 

al  [2], the sample of CoTa2O6 contained CoO and Ta2O6 as impurities, there by rendering the 

magnetic structure estimation questionable. Their previous work  [11] on the bicriticality is on a 

mixed composition or used a sample from the same batch. Hence, we understand that the 

question of correct magnetic structure of CoTa2O6 is not yet fully addressed. At the same time, 

we want to understand the magnetic properties of low dimensional Co-chains in this compound 

consequent to dilution with a non-magnetic entity to realize spin dimers of Co. With this 

motivation, we prepared a series of trirutile compounds Co1-xMgxTa2O6 (x = 0, 0.1, 0.3, 0.5, 0.7, 

and 1). It has been reported  [10] [12] [13] that many trirutile shows short-range magnetic order 

with reduced dimensionality of spins bounded by weak magnetic interactions. So, we want to 

investigate whether the Co moments would form dimers or clusters and further, to investigate the 

nature of spin correlations. This study would then form the preliminary basis for the future work 

to examine the magnetic excitations resulting from the ground state. Interestingly, the magnetic 

excitations or the magnons originating from trirutiles or their spin-phonon coupling has not been 

studied so far using neutron scattering techniques. It is the aim of the present work to form the 

framework for such a future work. 

In the present thesis, to study structural, magnetic and thermodynamic properties in the 

series of compounds (Co1-xMgxTa2O6, where, x = 0, 0.1, 0.3, 0.5, 0.7, and 1) powder X-ray 

diffraction, magnetization, specific heat and neutron powder diffraction techniques were 

employed. All the samples were prepared using standard solid-state reaction method.  Powder X-
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ray diffraction patterns were measured in Rigaku min-flex 660I. The magnetization for the series 

of compounds was carried out in a Physical Property Measurement system (PPMS), Quantum 

Design using the susceptibility option. The specific heat of the series of compounds were 

measured using the specific heat option in the PPMS. To obtain qualitative and quantitative 

information about nuclear and magnetic structures, neutron diffraction data were gathered both at 

room temperature and at low temperature using a high-resolution neutron powder diffraction at 

University of Missouri Research Reactor (MURR). 
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Chapter 2: Theoretical Background 

2.1 CRYSTAL STRUCTURE 

A crystal structure forms when group of atoms called basis, is attached to every lattice 

point. A regular arrangement of points in the space are called lattice points. Precisely, we can say 

that when the basis of atoms is uniformly attached to every lattice point, crystal structure 

forms  [14].  

There are all together seven different type of crystal systems: (1) cubic, (2) tetragonal, (3) 

orthorhombic, (4) monoclinic, (6) triclinic, (7) trigonal and (8) hexagonal. Among them we are 

focus only on the tetragonal crystal system in the present thesis. This tetragonal crystal system 

has 𝑎 = 𝑏 ≠ 𝑐  and 𝛼 = 𝛽 = 𝛾 = 90°. Here, a, b and c are the lattice constants, and  𝛼, 𝛽, and 𝛾 

are the angles between b and c, a and  c and a and b respectively. [15]  

 

Figure 2.1: Seven different type of unit cell [15] 
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2.2 POWDER X-RAY DIFFRACTION (PXRD) 

X-ray diffraction is a basic tool for crystal structure analysis and phase identification of 

the crystalline materials. The powder X- ray diffraction technique that we use extensively in this 

thesis is for phase identification and study of crystal structure is based on the Bragg’s law, is 

shown in figure 2.2. The X-rays that are reflected specularly from the parallel planes of atoms in 

the crystal, are superimposed to give the diffraction pattern. These diffraction patterns are result 

of constructive interference of the scattered X-ray beams. As a first approximation, it is assumed 

that the scattering is completely elastic and there is no loss of energy of incident X-ray after 

reflection from the atoms.  Scattered X-ray beams interfere constructively if the path difference 

of diffracted beam is equal to an integral multiple of wavelength of incident X-rays. 

Mathematically, we can write the Bragg’s law as, 

2d sin 𝜃  =  nλ 

Where d represents interplanar distance, 𝜃 is the glancing angle, 𝑛 is the integer number showing 

the order of reflection and λ is the wavelength of the monochromatic incident X-rays.  Bragg’s 

reflection occurs only if the wavelength of the incident X-ray wave is comparable to the size of 

the scattering object (i.e.λ ≤ 2d). 

 

(2.1) 
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 Figure 2.2:  Represents the geometrical figure of Bragg’s law  [15].  

In the above figure; 1, 2 represent incident monochromatic X-rays and 1’, 2’ represent 

respective reflected rays. A &B are the consecutive atomic planes and the dark circles represent 

two nearest atoms of consecutive planes and d is the distance between two consecutive atomic 

planes (A and B). Also 𝑥𝑦 = 𝑦𝑧 = d sin 𝜃 

2.2.1 PXRD instrument 

For the characterization of powder samples for its phase purity and crystal structure, the 

Rigaku Miniflex 600I diffractometer was used. It is also called benchtop diffractometer. The 

instrument has 600 W fixed x-ray tube and a fixed detector; however, it has rotating sample 

stage. It has copper target which produces the x-ray of wavelength 1.485 Å. The tube produces 

the divergent x-ray beam which is collected by silicon strip detector after reflection from the 

sample. 

2.3 ELASTIC NEUTRON DIFFRACTION 

Elastic (where there is no energy transfer involved) powder neutron diffraction is like X-

ray diffraction, but it can provide information about magnetic structure in addition to nuclear 

structure of the material. In an elastic neutron diffraction experiment, the powder sample is 

placed on the path of neutron beam and the scattered neutrons from the sample are recorded by 

the detector. The diffraction pattern thus obtained can provide the structural information of the 

sample. Neutron being chargeless, they have high penetrating power so they can penetrate the 

surface of the material and can provide information on the interior structure of material. 

Furthermore, neutron has magnetic moment so they can be used to study the magnetic structure 

of the material or sample  [16].  
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Figure 2.3: This is the architecture diagram of the reactor and instrumental beamline in MURR 

(Missouri University Research Reactor).  

The architecture diagram of nuclear reactor in MURR is shown in above Figure 2.3. 

There is a pool at the center of the reactor, shown in blue color. High Resolution Neutron 

Powder Diffractometer PSD is shown in right top side of the pool in brown color. Similarly, at 

left top side Double-Axis Powder Diffraction (2 XC) and Neutron Reflectometer are situated 

which are shown in green color. The Triple-Axis Spectrometer (TRIAX) shown in left bottom 

side of the pool. Similarly, biological shielding and thermal neutron chamber are shown in dark 

gray and yellow colors, respectively. We used PSD instrument for the measurement of elastic 

neutron diffraction. 
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Neutrons coming out from the nuclear reactor have very high speed about 14000 km/s 

and has energy about 1 MeV. These fast-moving neutrons are slow down by passing through 

cold sources and these cold sources are simply the container containing hydrogen or deuterium at 

cold temperature. For elastic scattering of the powder sample, we use neutrons having energy 

around 0.0373 eV, and the energy lies in the range of  thermal neutrons  [16]. The wavelength of 

thermal neutrons is given by, 

𝜆 =  
ℎ

𝑚𝑣
 

where  ℎ = 6.62 × 10−34 Js the Planck’s constant, m and v are mass and velocity of neutron 

respectively. 

Equivalently, the above equation (2.2) can be written as, 

𝜆 =
ℎ

√2𝑚𝑘𝐵𝑇
 

Where 𝑘𝐵 is the Boltzmann constant and T is the temperature. 

For room temperature, 𝑇 =  300 K, wavelength of neutron 𝜆 ≈  2 Å. i.e wavelength of neutron 

is comparable to the atomic distance. So thermal neutrons are suitable for the study of atomic 

and magnetic structure of any sample or material. [17] 

 For our samples we used the High-Resolution Neutron Powder Diffractometer (PSD) at 

University of Missouri Research Reactor (MURR). Thermal neutrons having wavelength 1.485 

Å were employed. The instrument covers the angular range from 5° – 105° varying temperature 

from 5 K to 800 K. The neutron beam can be focused in both vertical and horizontal direction. 

The 9 Frankuchen cut Si (511) blades are used to focus beam in vertical direction and by 

applying bending strain, horizontal neutron beam can be focused. 

Table I: Energy and wavelength of cold, thermal and hot neutrons [18] 

(2.2) 

(2.3) 
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Types of neutrons Energy (meV) Wavelength (Å) 

Cold neutron 0.1-5   4-30 

Thermal neutron 5-100 1-4 

Hot neutron 108-1010
 9× 10−4 − 9 × 10−5 

2.3.1 Neutron scattering cross-section 

X-rays are diffracted by the electronic distribution of atoms; however atomic nuclei are 

responsible for the scattering of the neutrons. Also, in case of magnetic samples i.e. magnetic 

nuclear scattering, neutrons get scattered if their magnetic moment interact with magnetic 

moment of atoms. Such scattering takes place only if the size of the scattering object is 

comparable to the wavelength of neutrons.  

 

Figure 2.4: Geometrical figure of neutron scattering cross-section. (Marshall and Lovesey 1971; 

Squires 1978) 
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2.3.2 Scattering cross-section 

 The neutron scattering cross-section refers to the ability of the target atoms to scatter the 

incident neutrons. It can be defined as the ratio of the neutrons scattered by the target atoms per 

second to the number of neutrons incident per unit area per second (i.e. incident neutrons flux).  

Scattering cross − section(σ) =
number of neutrons scattered per second

incident neutron flux
 

The typical values of scattering cross-section for Co, Ta and O are 5.6(3), 6.01(12), and 4.232(6) 

respectively. [19] 

For an incident neutron flux of wave vector 𝑘(=
2𝜋

𝜆
), the scattered neutron flux detected 

by the detector of angular element dΩ(= sin θdθdɸ) is given by (
𝑑𝜎

𝑑𝛺
) dΩ. Where 

𝑑𝜎

𝑑𝛺
 is the 

differential scattering cross section and (θ, ɸ) are the polar coordinates of the position of the 

detector. We have assumed that the scattering is completely elastic and nucleus is rigid and 

fixed. If the neutrons falling on the sample have plane wave function i.e. 𝛹𝑖 = 𝑒𝑖𝑘𝑧, then, the 

beam of neutrons which are scattered from the sample/target will have spherical symmetry and 

can be represented as 𝛹𝑠 =
−𝑏

𝑟
𝑒𝑖𝑘𝑟.  Here, k is the wave vector and is equal to 2𝜋/𝜆; r represents 

the distance between the detector and the scattering atom and b is the nuclear scattering length 

and is a complex number. Thus, the scattering cross section can be written as, 

𝜎 =
𝑓𝑙𝑢𝑥 𝑜𝑓 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 (𝜃,   ɸ )

𝑓𝑙𝑢𝑥 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠
 

𝜎 =
4𝜋𝑟2 𝑣 |(−

𝑏
𝑟)𝑒𝑖𝑘𝑟|

2
 

𝜎 = 4π𝑏2 

Here, 𝑣 is the neutron velocity and the imaginary part of the scattering length 𝑏 is responsible for 

the absorption of neutron. However, most of the compounds and elements have low value of 

(2.5) 
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absorption and 𝑏 can be consider as the real constant. [17] The typical value of scattering length 

and absorption coefficient for Cobalt are 2.49(2) and 37.18(6). [19]  

2.3.2 Coherent and incoherent neutron scattering 

X-ray scattering is always coherent, as only electrons are responsible for the scattering 

and all the electrons distributed around the atoms have identical power of scattering. However, 

neutron scattering completely depends on 𝜎 and b of the scattering material. If the scattering 

sample is composed of the atoms of same species, the neutrons are scattered in the same way and 

this type of scattering is called coherent scattering. If the scattering sample is composed 

dissimilar atoms, they have a mixture of scattering centers. Such mixtures of scattering centers 

can lead to randomness in the scattered neutrons because all the atoms cannot respond to the 

neutrons in an identical way. We may lose the similarity in the scattering pattern and this leads to 

the incoherent neutron diffraction  [16]. 

The total differential cross section can be written as the sum of coherent and incoherent 

differential cross section; 

𝑑𝜎

𝑑𝛺
= (

𝑑𝜎

𝑑𝛺
)

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡
+ (

𝑑𝜎

𝑑𝛺
)

𝑖𝑛𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡
 

Total cross − section = ∫
𝑑𝜎

𝑑𝛺
 𝑑𝑠 

2.3.3 Magnetic scattering  

  Magnetic scattering of neutron arises due to its magnetic moment, which interact with the 

orbital and spin magnetic moments of the atoms in a solid.    In case of single atom, the magnetic 

scattering is due to unpaired electron spins. Scattering will occur when the electronic distribution 

is comparable to the size of thermal neutrons, and the interference phenomena thus occurs 

(2.6) 

(2.7) 
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further leads to the magnetic form factor. The differential magnetic neutron scattering cross-

section per unit atom is given by, 

(  
𝑑𝜎

𝑑𝛺
  )

𝑚𝑎𝑔
= 𝑞2𝑆2 (

𝑒2𝛾

𝑚𝑐2
) 𝑓2 

Here, q is the magnetic interaction vector, S is spin quantum number of target atom, e and m are 

the charge and mass of the electron. Similarly, c represents speed of the light, γ is the magnetic 

moment of the neutron and f represent magnetic form factor. From the quantum number 𝑆 the 

scattering cross-section depends on the valance state of ion or atom and for the contribution of 

orbital moments, 2𝑆 is replaced by 𝑔𝐽. 

Here, g is called lande splitting factor and is written as, 

𝑔 = 1 +
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
 

The degree of correlation of magnetic moment of the assembly of atoms varies from zero to 

unity (i.e. for paramagnetic ≈ 0  and ferromagnet ≈ 1). In case of completely disordered 

paramagnetic system, we can observe the incoherent scattering as the average of 𝑞 over all the 

orientation is 
𝜋

4
. This leads to the destructive interference phenomena; however, it still 

contributes for the background of powder diffraction pattern. 

Thus, we can write the total cross-section as; 

𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑐𝑜ℎ + 𝜎𝑖𝑛𝑐𝑜ℎ + 𝜎𝑁𝑀 + 𝜎𝑀 + 𝜎𝑝𝑜𝑙 

Where, 𝜎𝑐𝑜ℎ and 𝜎𝑖𝑛𝑐𝑜ℎ are the coherent and incoherent nuclear scattering cross sections; 𝜎𝑁𝑀 

and 𝜎𝑀 are nuclear magnetic and magnetic scattering cross section terms, and 𝜎𝑝𝑜𝑙 is polarization 

term. So, if we take a simple magnetic structure having co-linear moments (i.e. neglecting 

(2.9) 

(2.10) 

(2.8) 
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incoherent scattering terms), the differential cross-section becomes, 

 
𝑑𝜎

𝑑𝛺
=  𝑏2 + 2𝑏𝑝𝑷̂. 𝒒 + 𝑝2𝑞2  

Where, 𝑷̂ represents the unit vector of polarization of incident thermal neutrons. For simple 

structure, 𝜎𝑝𝑜𝑙 = 0, and the remaining terms are nuclear, magnetic and nuclear-magnetic 

interaction. For unpolarized incident neutrons, the interaction terms in average reduces to zero 

and the above equation (2.10) becomes, 

 
𝑑𝜎

𝑑𝛺
=  𝑏2 + 𝑝2𝑞2 

2.3.4 Diffracted neutrons from ideal polycrystalline material 

For the diffraction of the neutrons from the sample, we assume that the crystal is 

composed of perfectly parallel flat planes having uniform scattering density and the scattering 

density is concentrated only on the nucleus of the atom. 

 

Figure 2.5: 2D figure of diffraction of neutrons from parallel planes  [17]. 

The maximum or minimum intensity of scattered neutron wave depends on the phase 

difference of two scattered waves from the target atoms. The maximum intensity is observed if 

the phase difference between two light or two dark atoms is 2𝜋 or 0. But if the phase difference 

(2.11) 

(2.12) 
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between two adjacent light and dark atoms is 2𝜋ℎ𝑥 (𝑥 =  
𝜒

𝑎
), where 𝜒 is the distance between 

two adjacent atoms (dark circle and full circle atoms) and 𝑥 is the path difference. The scattered 

waves can cancel more or less with the reduced intensity. 

In 3D, the phase difference between a dark and a bright atom at the origin is given by, 

ɸ = 2𝜋(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧) 

Here, ℎ, 𝑘 , 𝑙   are the Miller indices of the reflecting plane and (𝑥, 𝑦, 𝑧)  are the fractional 

coordinates of the atom which is inside the unit cell having dimensions 𝑎, 𝑏, and 𝑐. 

The equation of the scattered wave from any atom can be written as, 

A eiɸ = 𝑏𝑒2𝜋𝑖(ℎ𝑥+𝑘𝑦+𝑙𝑧) 

Where, A represents the amplitude of the scattered wave. 

And the structure factor can be expressed as,  

𝐹ℎ𝑘𝑙 = ∑ 𝑏𝑛𝑒2𝜋𝑖(ℎ𝑥𝑛+𝑘𝑦𝑛+𝑙𝑧𝑛)

𝑛

 

𝐹ℎ𝑘𝑙 = ∑ 𝑏𝑛𝑒2𝜋𝑖(𝑯𝒉𝒌𝒍 .𝒓𝒏)

𝑛

 

Where, 𝑟𝑛 is the position vector of nth atom and equation (2.14) and (2.15) represents Fourier 

transform of the charge density at reciprocal lattice points. [17]  

2.4 RIETVELD ANALYSIS 

Rietveld analysis technique was initially projected by Hugo M. Rietveld to analyze 

neutron pattern. Later, it was extensively used for refining the x-ray and neutron powder pattern, 

as it can perform whole pattern fitting instead of single peak analysis. These days Rietveld 

analysis is a basic tool to probe structural and magnetic information of the given powder 

samples. Structural information refers to the lattice parameters, atomic positions, occupancy, etc.  

(2.13) 

(2.14) 

(2.15) 
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However, a high-quality experimental diffraction pattern is required for profile fitting and 

modeling the data model, to examine powder diffraction pattern. 

The basic principle of profile refinement is based on the least square refinement, which is 

demonstrated by the function which has to be minimized with respect to the parameters. The 

function which has to be minimized in the Rietveld method is; 

𝜒2 =  ∑ 𝑤𝑖(𝑦𝑂𝑏𝑠 − 𝑦𝐶𝑎𝑙)2

𝑖

 

Where, 𝑤𝑖 =   
1

𝜎𝑖
2 and 𝜎𝑖

2 is a variance of the observed data. Similarly, 𝑦𝑂𝑏𝑠 and 𝑦𝐶𝑎𝑙 are the 

observed and calculated intensities at each step. The summation represents the sum of all points 

in the diffraction pattern. It requires many the least square approach for the refinement continues 

until the theoretical profile line matches the measured profile  [20]. 

 Peak positions, intensities and shapes are other important powder diffraction profiles. 

Peak positions in the diffraction pattern are determined by Bragg’s law using wavelength and d-

spacing of unit cell. However, the peak intensities depend on the lattice parameters and the 

atomic coordinates. Peak shapes of the powder pattern is influenced by various factors via, 

sample size and shape, characteristic of incident beam and the instrument used for diffraction. 

For instance, if we use monochromatic neutron beam, the peaks obtained in the diffraction 

pattern are Gaussian shape. The width of the peaks extends out with the increase of Bragg 

angles. And the angular dependency can be represented by the following equation, 

𝐻2 = 𝑤 + 𝑣 𝑡𝑎𝑛𝜃 + 𝑢 (𝑡𝑎𝑛𝜃)2 

It is also called the Caglioti formula. H represents full widths at half maximum (FWHM), and u, 

v and w are halfwidth parameters which are refined during the Rietveld analysis. Beside 

halfwidth parameters, lattice parameters, background, atomic positions and in some case 

occupancy number must be refined one by one until we get a good profile fitting. The best way 

to know whether the refinement we did is fruitful or not is given by difference between observed 

(2.16) 

(2.17) 
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and calculated data. The difference has to be flat in order to get the best fit [20]. Beside this R-

values provide the quality of fit. They are listed below: 

a) Profile factor; 

𝑅𝑝 = 100
∑ |𝑦𝑂𝑏𝑠 − 𝑦𝐶𝑎𝑙|𝑖

∑ 𝑦𝑂𝑏𝑠𝑖
 

b) Weighted profile factor; 

𝑅𝑤𝑝 = 100 [
∑ |𝑦𝑂𝑏𝑠 − 𝑦𝐶𝑎𝑙|2

𝑖

∑ 𝑤𝑖𝑦𝑂𝑏𝑠
2

𝑖

]

1
2

 

c) Expected weighted factor; 

𝑅𝑒𝑥𝑝 = [
𝑛 − 𝑝

∑ 𝑤𝑖𝑦𝑂𝑏𝑠
2

𝑖

]

1
2

 

Where, n represents the total number of points used in the refinement, which is the difference 

of total number of points in the pattern and total number of excluded points. And, p is the 

number of refined parameters. 

d) Indicator for goodness of fit; 

𝑆 =
𝑅𝑤𝑝

𝑅𝑒𝑥𝑝
 

e) Reduced chi-square; 

𝜒2 =  [
𝑅𝑤𝑝

𝑅𝑒𝑥𝑝
]

2

=  𝑆2 

f) Bragg Factor; 

𝑅𝐵 = 100
∑ |𝐼𝑂𝑏𝑠 − 𝐼𝐶𝑎𝑙|𝑗

∑ |𝐼𝑂𝑏𝑠|𝑗
 

Where, 𝐼𝑂𝑏𝑠and 𝐼𝐶𝑎𝑙 are observed and calculated integrated Bragg intensities without 

background. All these R-values are significant if only if they are calculated from background 

removed intensities [20]. A good fit has low R-values and 1 < 𝜒2 < 5. 

 The software like Fullprof, GSAS, Rietica etc can be used for the Retiveld refinement. 

We employed Fullprof for the analysis of neutron and x-ray powder diffraction pattern for 

analysis of PXRD and neutron diffraction pattern. And the best way to start to refine is to copy 

PCR file (input control file) and modify it according to the need of the refinement; x-ray, 

(2.18) 

(2.21) 

(2.22) 

(2.23) 

(2.19) 

(2.20) 
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neutron, and magnetic structure. It is always necessary to collection the information about profile 

shape function, lattice and instrumental parameters and the experimental conditions before 

running any Rietveld refinement. 

2.5 MAGNETIC PROPERTIES 

Magnetic moment of a material measures the strength and direction of its magnetism. The 

term magnetism refers to the magnetic dipole moment. Any magnetic substance like a bar 

magnet or a current in a loop, has magnetic moment. An electron moving around the atom also 

has magnetic dipole moment due to its spin. The alignment of these magnetic moment in any 

material gives rise to magnetism. Depending on the alignment of magnetic moments with or 

without external field, we can classify Ferromagnetism, Antiferromagnetic, Ferrimagnetism, 

Para magnetism, and Diamagnetism. 

2.5.1 Magnetic interaction 

Magnetic interactions take place between two ions through the direct overlap of the wave 

functions, and the coupling of magnetic moments between ions or atoms give rise to magnetism 

in many materials. The quantum mechanical interaction which arises due to the change in the 

expectation value of energy of two identical particles through the overlap of wave functions is 

called exchange interaction. The exchange interaction between neighboring magnetic ions are 

responsible for individual moments to align parallel or antiparallel alignment with their 

neighboring atoms or ions. Generally, there are four types of exchanges, viz Direct, Indirect, 

Double and Anisotropy. The exchange which operates between the moments which lie very close 

to each other i.e. they are sufficiently close to overlap their wave functions is called Direct 

exchange. They are short range and has very strong coupling. Similarly, if the interaction 

between ions are mediated through an intermediary, like electrons, the exchange is called 



 21 

Indirect exchange. Such exchange takes place on the metals where there is no direct overlapping 

between neighboring magnetic orbitals, i.e. its long-range coupling. Similarly, if the interaction 

between the ions is mediated by the non-magnetic ions, then we call it as Superexchange. Double 

exchange can be observed in the oxides in which the magnetic ion has mixed valency, so that it 

can have more than one oxidation state. And such exchange mechanism is seen in ferromagnetic 

alignment. Finally, the exchange interaction occurring between excited state of one ion and 

ground state of the other ion is called the Anisotropic exchange. [21]  

The magnetic interactions that operate between the magnetic moments in a solid give 

rises to different types of ground states, which includes, antiferromagnets, ferromagnets, and spin 

glasses.  

2.5.2 Antiferromagnetism and ferromagnetism 

An ideal antiferromagnet has zero net magnetic moments with their spins in the direction 

opposite to each other. In order to interpret antiferromagnetism, we can consider the system as 

composed of two sublattices having equal magnetizations, but oriented in opposite directions. 

They have negative exchange interaction as a result of the nearest neighbor magnetic moments 

being antiparallel to one another. However, in ferromagnets, the magnetic moments are directed 

in the same direction and positive dominant exchange interaction is responsible for such effect. 

Ferromagnets have magnetic moments even in null magnetic fields i.e. they have strong 

spontaneous magnetization. [21]   

2.5.3 Magnetic susceptibility 

Magnetic susceptibility is given by the ratio of magnetization to the magnetic field 

intensity. 
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𝜒 =
𝑀

𝐵
                   (C. G. S) 

It is a unitless physical quantity and a basic parameter to probe magnetic properties. For 

ferromagnetic substance 𝜒 < 1, however, for antiferromagnetic, 𝜒 is positive and almost equal to 

paramagnetic materials. 

2.5.4 Curie-Weiss law  

For simple paramagnetic substance, there is an inverse relation between temperature and 

susceptibility (𝜒 ), this is called Curie law of magnetism. 

𝜒 =
𝐶

𝑇
 

Here, 𝐶 represent the curie constant and is given by 𝐶 = 𝑁𝑔2𝜇𝐵
2 𝑆(𝑆+1)

3𝑘𝐵
. Here, 𝑁 is the 

Avogadro’s number, 𝑔 is the Landẽ g-factor, 𝜇𝐵 is the Bohr magneton 𝑆 is the spin value and 

𝑘𝐵is the Boltzmann constant. The magnetic susceptibility with Curie Weiss dependence is given 

by, 

𝜒 ∝
1

𝑇 − 𝜃
 

This is also called Curie-Weiss law. Here, 𝜃 is the Weiss temperature. If 𝜃 < 0, 𝜃 > 0 and 𝜃 = 0 

represents antiferromagnetic, ferromagnetic and paramagnetic material respectively. As we 

lower the temperature for antiferromagnetic materials, 𝜒 is reduced, which reflects that magnetic 

structures are ordered. But the rise in temperature can thermally induced disorder and increases 

the value of 𝜒 i.e. 𝜒 has maximum value at TN and decreases at higher temperature following 

Curie-Weiss law. [15] 

 

(2.24) 

(2.25) 

 (2.26) 
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Figure 2.6: Plot between 1/𝜒 and Temperature (K) for various substance  [15] 

2.5.5  Spin chains 

A linear chain of spins in one dimension makes a spin chain. Generally, two types of spin 

chains exist, either Ising or Heisenberg. In Ising spin chains, individual spins are forced to point 

either parallel or antiparallel in a particular direction, on the other hand, Heisenberg spins can 

freely point in any direction. Such type of spin chains is observed on the compounds having 

general formula ABX3. Here, A & B are non-magnetic and magnetic cations, having single and 

doubly charged respectively. X is halide anion. For instance, CsCoCl3 shows the 1-D Ising spin 

chain whereas, KCuF3 shows 1-D Heisenberg spin chain. Such system most of the time can lead 

to 3-D long range magnetic order which may be due to small interchain interaction which can 

link the chain together. 

2.5.6 Two-dimensional magnetism 

In the present thesis, we are concerned about A2BX4 type compounds that display low 

dimensional magnetism.  Here, A is a singly charge non-magnetic cation, B is a magnetic cation 

with doubly charge and X is a halide. These compounds adopt tetragonal structure where 

magnetic ions sit on each corner of square lattice in 2-D. One and two-dimensional bulk 
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adjacent Co-O planes (z = 0 and z = 1/2) are separated by two TaO planes. The lattice parameters 

obtained from neutron diffraction of CoTa2O6 are comparable to earlier literature report  [25].  

 

Figure 4.1: The neutron diffraction pattern for x = 0, 0.3, and 0.7 at T = 295 K. The red color 

represents, experimental data and the black solid line represents the Rietveld fit 

assuming the trirutile structure in P42/mnm patterns. The difference patterns are 

shown in blue color and the green vertical tick marks represents the Bragg peaks. It 

is clear that all the compositions crystalline in tetragonal trirutile structure at room 

temperature. 

The atomic position and refined lattice parameters for x = 0, 0.3, and 0.7 are presented in 

table III. Similarly, the Co – O bond distances and the O – Co – O bond angles for CoTa2O6 are 

presented in table III.  

Table III: The atomic position and lattice parameters for the composition x = 0, 0.3, and 0.7 at 

temperature 295 K. 



 43 

values show an anomaly for x = 0.5. The value of γ that is observed in CoTa2O6 lies intermediate 

with the values of 203 mJ/mol K2 for CoSb2O6 and 58.7 mJ/mol K2 for CuSb2O6  [23].  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: (a) Represents specific heat capacity for x = 0 at 0 T, 5 T, and 7 T. Cp of x = 1 so 

shown in same figure with pink color at 0 T, for comparison. The insert graph 

represents dCp/dT for x = 0.1. Figure (b) rep resents the specific heat capacity for x 

= 0, 0.1, 0.3, 0.5, 0.7, and 1 at 0 T and the insert graph show the Cp of x = 0.5 at 0 T 

and 7 T. Figure (c) represents Ising fit (red solid line) of magnetic specific heat for x 

= 0, in zero field.  

The Ising nature of these compounds might point to the fact that the γ term signifies the magnetic 

excitations from the local magnetic order. The magnetic specific heat in the temperature range 

below TN could be modeled using the expression,  [23] 

𝐶𝑚 (𝑇)  =  𝐴1𝑇exp (−∆1/𝑘𝐵𝑇 )  +  𝐴2𝑇3exp(−∆2/𝑘𝐵𝑇 ) (3.3) 
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where, A1 and A2 are constants, ∆1 and ∆2 are the energy gap values. The second term is the 

familiar magnon term for an antiferromagnet with a gap in their excitation spectrum. A fit using 

this expression to the Cm of CoTa2O6 is shown in the inset of Fig 4 (a) using the red solid line. 

From the fit, A1 = 2.3(2), A2 = 5.7(7), ∆1/kB = 12.6(4) K and ∆2/kB = 36.5(9) K are obtained. As a 

comparison, 1.49 K and 33 K respectively were obtained for CoSb2O6. 

Table IV: The parameters exacted from the analysis of low temperature specific heat of Co1-

xMgxTa2O6 

x  𝛾 (mJ/mol K2)  𝛽 (mJ/mol K2)  𝜃D (K) 

0 80.4(1) 0.0241(5) 892 

0.1 55.4(3) 0.0254(3) 867 

0.3 28.7(3) 0.0299(5) 829 

0.5 13.3(7) 0.0191(7) 963 

0.7 4.4(1) 0.0211(5) 931 
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Conclusion 

We have synthesized high quality and pure phases of trirutile CoTa2O6 and its derivative 

by doping Co with Mg, Co1-xMgxTa2O6. The magnetic properties of CoTa2O6 shows features of 

low dimensional magnetism via broad features in magnetization. However, the specific heat 

shows a sharp peak at the transition which is not affected much by magnetic fields up to 7 T. The 

short-range magnetic contribution is seen as a broad peak in magnetization and specific heat at 

around 15 K. Our analysis of magnetic properties using models pertaining to low dimensional 

magnetism failed at obtaining a conclusive picture regarding if the spins are Ising or Heisenberg. 

Using neutron diffraction experiments we confirm the trirutile phase of the synthesized 

compounds. Preliminary magnetic structure determination using neutron data points towards a 

magnetic structure which deviates from 2D type. With the introduction of Mg in CoTa2O6, the 

broad features in magnetization disappears. However, in the magnetization response, we see 

ferromagnetic features are slightly enhanced when Mg doping is increased to 70%. The present 

work indicates that CoTa2O6 has inherent magnetic short-range order that might be interesting to 

investigate using inelastic neutron scattering experiments. This preliminary work sets the stage 

for future experimental work on single crystals of CoTa2O6. 
 

 

 

 

 

 

 

 

 

 



 46 

References 

[1] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1307 (1966). 

[2] E. J. Kinast, C. A. dos Santos, D. Schmitt, O. Isnard, M. A. Gusmão, and J. B. M. da Cunha, J. 

Alloys Compd. 491, 41 (2010). 

[3] R. Kremer, J. Greedan, E. Gmelin, W. Dai, M. White, and S. Eicher, J. Phys. Colloq. 6, 6 (1988). 

[4] M. Takano and T. Takada, Mater. Res. Bull. 5, 449 (1970). 

[5] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). 

[6] A. B. Christian, S. H. Masunaga, A. T. Schye, A. Rebello, J. J. Neumeier, and Y. Yu, 90, 1 (2014). 

[7] J. M. Law, H. J. Koo, M. H. Whangbo, E. Brücher, V. Pomjakushin, and R. K. Kremer, Phys. Rev. 

B - Condens. Matter Mater. Phys. 89, 4 (2014). 

[8] D. T. Maimone, A. B. Christian, J. J. Neumeier, and E. Granado, Phys. Rev. B 97, 1 (2018). 

[9] A. B. Christian, A. T. Schye, K. O. White, and J. J. Neumeier, J. Phys. Condens. Matter 30, 

(2018). 

[10] N. Prasai, A. Rebello, A. B. Christian, J. J. Neumeier, and J. L. Cohn, Phys. Rev. B - Condens. 

Matter Mater. Phys. 91, (2015). 

[11] E. J. Kinast, V. Antonietti, D. Schmitt, O. Isnard, J. B. M. da Cunha, M. A. Gusmão, and C. A. dos 

Santos, Phys. Rev. Lett. 91, 197208 (2003). 

[12] R. Kremer, J. Greedan, E. Gmelin, W. Dai, M. White, S. Eicher, and K. Lushington, J. Phys. 

Colloq. 49, C8 (1988). 

[13] R. Baral, H. S. Fierro, L. M. Martinez, S. R. Singamaneni, and H. S. Nair, Joural Appl. Phys. 125, 

033904 (2019). 

[14] C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996). 

[15] Anthony R West, Solid State Chemistry and Its Applications, 2nd ed. (Wiley, 2014). 

[16] T. Heitmann and W. Montfrooij, Practical Neutron Scattering at a Steady State Source, 1st ed. 

(Mizzou Media - University BookStores, Missouri, 2012). 

[17] E. H. Kisi and C. J. Howard, Applications of Neutron Powder Diffraction (Oxford University 



 47 

Press, New York, 2008). 

[18] F. Fernandez-Alonso and D. L. Price, Neutron Scattering : Fundamentals (Academic Press, 

Amsterdam, 2013). 

[19] A.-J. Dianoux and L. Gerry, NEUTRON DATA BOOKLET, 2nd ed. (OCP Science, 2003). 

[20] G. Will, Powder Diffraction: The Rietveld Method and the Two Stage Method to Determine and 

Refine Crystal Structures from Powder Diffraction Data (New York, 2006). 

[21] O. Master, S. In, and C. Matter, Magnetism in Condensed Matter - Stephen Blundell.Pdf (Oxford 

University Press, New York, 2001). 

[22] E. S. R. Gopal, Specific Heats at Low Temperatures, 1st ed. (Plenum Press, New York, 1966). 

[23] A. B. Christian, A. Rebello, M. G. Smith, and J. J. Neumeier, Phyical Rev. B 92, 174425 (2015). 

[24] V. Antonietti, E. J. Kinast, L. I. Zawislak, J. B. M. Da Cunha, and C. A. Dos Santos, J. Phys. 

Chem. Solids 62, 1239 (2001). 

[25] J. N. Reimers, J. E. Greedan, C. V Stager, and R. Kremer, J. Solid State Chem. 83, 20 (1989). 

 

  



 48 

Vita 

My name is Raju Baral. I did my undergraduate and graduate study in physics from 

Tribhuvan University, Nepal. As soon as I completed my graduate study from Tribhuvan 

University, I joined Bagmati College as a physics lecture, where I taught physics for seven years. 

In August 2017, I joined The University of Texas at El Paso (UTEP) for my master’s in physics 

and started working in Dr. Nair’s lab. During my studies in UTEP, I got an opportunity to a 

teaching assistant and I also worked as a research assistant during both summer sessions. During 

my two years master’s program in UTEP, I was able to present my research work in various 

conferences like Gordan Research and MRS conferences. With the support and guideline of Dr. 

Nair, I was able to publish two papers, one of which was on my thesis. For this I would like to 

thank my advisor and also like to thank department of physics UTEP for providing me the travel 

funds for both conferences.  

 

 

 

 

 

 

 

 

Permanent address: Kaseri, Arwabijaya 04 

   Kaski, Nepal 

 

This thesis/dissertation was typed by Raju Baral. 


