2012-01-01

Dynamic Earthquake Triggering in the Continental U.S.

Ibrahim Cerda
University of Texas at El Paso, ibrahimc@hotmail.com

Follow this and additional works at: https://digitalcommons.utep.edu/open_etd

Part of the [Geophysics and Seismology Commons](https://digitalcommons.utep.edu/open_etd)

Recommended Citation

https://digitalcommons.utep.edu/open_etd/2055

This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact lweber@utep.edu.
DYNAMIC EARTHQUAKE TRIGGERING IN THE CONTINENTAL U.S.

IBRAHIM CERDA
Department of Geological Sciences

APPROVED:

Aaron A. Velasco, Ph.D., Chair

Laura L. Serpa, Ph.D.

Virgilio Gozalez, Ph.D.

Benjamin C. Flores, Ph.D.
Dean of the Graduate School
Dedication

I lovingly dedicate this thesis to my daughter, Madyson R Cerda.
My little angel.

To my parents, Jose L.Cerda and Elvia Solis de Cerda.
For all their support and guidance in my academic endeavors
DYNAMIC EARTHQUAKE TRIGGERING IN THE CONTINENTAL U.S.

by

IBRAHIM CERDA, B.S.E.E., B.S.E.SCI.

THESIS

Presented to the Faculty of the Graduate School of
The University of Texas at El Paso
in Partial Fulfillment
of the Requirements
for the Degree of

MASTER OF SCIENCE

Department of Geological Sciences
THE UNIVERSITY OF TEXAS AT EL PASO
December 2012
Acknowledgements

I would like to thank Dr. Aaron A. Velasco, my committee chairman and advisor, for his constant support and unconditional help. I would also like to thank all my colleagues and friends for all the ups and downs while we were doing our master studies. All of them contributed in so many different ways to make this dream come true. Last, but not least, I would like to thank all the people that are part of the Geological Department at UTEP, with their help and support this Master Thesis became a reality.

Thanks to all.
Abstract

Seismological studies have classified the changes in field stress required to trigger remote earthquakes into two basic types: static and dynamic triggering. Static triggering mainly originates from geological faults already present in certain tectonic environments and they could be originated due to continental crust, subduction zones or even from a highly seismicity zone. Dynamic triggering occurs when an event (earthquake) has been induced by the passing of seismic waves from a large main shock located at least two or more fault lengths from the epicenter of the main shock. This study investigates details of dynamic triggering not seen in previous studies. This investigation focuses on gathering and analyzing data to detect and tabulate high-frequency detections (HFD) that might indicate locally triggered earthquakes on the United States continent. In particular, data in form of seismic waveforms was downloaded and collected from EarthScope’s USArray, which has an active Transportable Array (TA) station program that emphasizes the broadband compilation of geophysical data across the continental U.S. All seismic waveforms were gathered using ~400 different seismic stations primarily focusing on two types of data: local events with a magnitude M≥4.0, and teleseismic events with magnitude M≥6.5. Triggered events were identified inherent in the event’s frequency spectra using an automated detector (Antelope software) and a series of filters by examining both the amplitude and frequency of the waves responsible for triggering. The results will help provide for a better understanding of the physical mechanisms involved in dynamic earthquake triggering and also will help identify zones in the U.S. continent which may be more susceptible to these kinds of events.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>Acknowledgements</td>
<td></td>
</tr>
<tr>
<td>vi</td>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>vii</td>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td>List of Tables</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>List of Figures</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Chapter 2: Static versus Dynamic Triggering</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Chapter 3: Dynamic Earthquake Triggering-Proof of Existence</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Chapter 4: Data</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Chapter 5: Software Required</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>Chapter 6: Methodology</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Chapter 7: Analysis and Results</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

Table 7.1: Seismic Network Information summarizing reference stations parameters.15
Table 7.2: Initial set of parameters of STA/LTA algorithm ...18
Table 7.3: Second set of parameters of STA/LTA algorithm ...18
Table 7.4: Seismic Network ..25
Table 7.5: List of Transportable Array (TA) stations ...26
List of Figures

Figure 2.1: Diagram illustrating the two types of stresses. (A) Static stress caused by natural stresses associated with the fault. (B) Dynamic stress produced by the passing of surface waves. 3

Figure 3.1: (a) Seismogram recorded at station F25A in Bowman, SD, USA for the 11 March, 2011, Japan Earthquake (Mw=9.0). (b) Same seismogram window high-pass filtered at a frequency of 5 Hz, showing a zoom-in of the high-pass filtered record indicating the presence of a triggered event inherent under the same seismic signal. 8

Figure 5.1: (a) Seismograms from the Japan Earthquake (East coast of Honshu, Japan M 9.0, March 11, 2011) displaying its three components (R, T, Z). (a) Seismogram recorded at ANVS station (KYRGYZ Network), analyzed using sac2000 software. (b) Same seismogram as in (a) but now using Antelope software, indicating all STA/LTA detections. 12

Figure 7.1: Seismogram and its envelope signal. Event recorded at station R11A on September 02, 2007 at 01:05:18 UTC. Santa Cruz Islands. Mag. 7.2 16

Figure 7.2: Seismogram showing signal time duration. Beginning of P (T1) to end surface wave (T2). Beginning of surface wave (T3) to end surface wave (T4) 17

Figure 7.3: Reference station ANMO. Plots showing number of events recorded for local events versus station distance. Data covers all 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the P-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station. 19

Figure 7.4: Reference station ANMO. Plots showing number of events recorded for local events versus station distance. Data covers year 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the surface-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station. 19

Figure 7.5: Reference station R11A. Plots showing number of events recorded for local events versus station distance. Data covers all 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the P-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station. 20

Figure 7.6: Reference station R11A. Plots showing number of events recorded for local events versus station distance. Data covers year 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the surface-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station. 20

Figure 7.7: Reference station TX31. Plots showing number of events recorded for local events versus station distance. Data covers all 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the P-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station. 21
Figure 7.8: Reference station R11A. Plots showing number of events recorded for local events versus station distance. Data covers year 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the surface-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station.

Figure 7.9: Reference station ANMO. Plot shows the different algorithm parameters and their performance. Data evaluated over one year period (2007). Data plotted in a 24-hour window versus number of events.

Figure 7.10: Reference station R11A. Plot shows the different algorithm parameters and their performance. Data evaluated over one year period (2007). Data plotted in a 24-hour window versus number of events.

Figure 7.11: Reference station TX31. Plot shows the different algorithm parameters and their performance. Data evaluated over one year period (2007). Data plotted in a 24-hour window versus number of events.

Figure 7.12: Baja California, Mexico earthquake. Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.13: Baja California, Mexico earthquake. Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.14: Chile earthquake. Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.15: Chile earthquake. Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.16: Japan earthquake. Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.17: Japan earthquake. Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.18: Nevada earthquake. Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.19: Nevada earthquake. Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.20: Sumatra earthquake (M 8.6). Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.21: Sumatra earthquake (M 8.6). Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.
Figure 7.22: Sumatra earthquake (M 8.2). Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins. ..40

Figure 7.23: Sumatra earthquake (M 8.2). Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.40
Chapter 1: Introduction

The sudden release of energy in the Earth, known as earthquakes, generate seismic waves, which not only take lives and damage man-made structures depending on the magnitude and location, but also produce secondary effects, most often in the form of a tsunami, or tidal wave.

Body waves are seismic waves that propagate through the body of earth. These include P-waves (primary/compressional waves), which propagate fastest and are longitudinal, and S-waves (secondary/shear waves), which move somewhat less fast and are transverse.

Surface waves are seismic waves that propagate along the surface of earth. These waves tend to be slower and more destructive than body waves because of their long frequency, long duration and large amplitude. Examples include Rayleigh waves (waves with both transverse and longitudinal characteristics) and Love waves (purely longitudinal). These waves have been shown to trigger earthquakes at great distances from a large earthquake, a process called remote or dynamic triggering.

A growing body of evidence demonstrates that dynamic stresses propagating as seismic waves from large earthquakes are capable of triggering additional earthquakes ranging from aftershocks in the near-field (within one to two source dimensions of the main shock epicenter) to remotely triggered earthquakes at distances exceeding 10,000 km.

Different hypotheses exist to explain the question of how, why and when dynamic triggering of earthquakes occurs. For example, static and dynamic Coulomb failure stress has been proposed to predict the timing and location of future aftershocks and rupture lengths based on fault geometry (Harris et al., 1998; Hill et al., 1993; Gomberg et al., 2004). This approach cannot fully explain long time delays between other events derived from the main shock because the majority of faults do not have a large history of seismicity to make such analysis (Harris, 1993). Static and dynamic rate and state stress defined in laboratory experiments have been conducted, yet actual fault values and geodetic data have not been well established to support these laboratory experiments (Harris, 1998). Fluid flow may explain
time delays between main shock and subsequent events (called delayed triggering), but may not be successful at predicting both the spatial and temporal aftershock pattern (Li et al., 2002; Seeber et al., 1998).

Surface waves appear to be the main triggering disturbance (Hill, et al., 2008; West et al., 2005; Velasco, et al., 2008). An important feature of surface waves are their propagation effects such as radiation pattern, geometrical spreading factors, attenuation and dispersion (waves of different periods travel at different velocities). Surface waves also travel through the earth at different velocities, group and phase, which are related by a derivative and where the group velocity will map the peak amplitudes as a function of period (Velasco, 2010). As a result, the surface waves’ arrivals must not be considered to be sharp arrivals, but spread out energy in time with a very specific surface wave’s group and phase velocities depending on the geological setting.

Dynamic triggering has not been fully studied or understood because it is relatively new phenomena, there are a small number of seismometers station locations with large bandwidth and dynamic ranges, and there are just a few earthquake catalogs that are complete to low magnitudes.

This investigation focuses on gathering and analyzing data to detect and tabulate high-frequency detections (HFD) that might indicate locally triggered earthquakes on the United States continent.
Chapter 2: Static versus Dynamic Triggering

Seismological studies have classified the variation of field stresses into two types: static stress and dynamic stress (e.g., Velasco, 2008; Brodsky, 2000). Static triggering figure 2.1(a), originates from slip-induced movement along geological faults. Static triggering occurs near a main shock rupture, due to the permanent stress change produced by one earthquake. Because static stress changes decay relatively rapidly with distance, the triggering potential caused by static stress is generally limited to one or two fault lengths from a given epicenter.

Dynamic triggering figure 2.1 (b), on the contrary, occurs beyond the influence of static stresses and usually correlates with the passage of large amplitude and long duration passing signals, such as surface waves. Current evidence suggests that triggering of events can occur at large distances away (thousands of km) from the original main earthquake (e.g., Velasco et al., 2008; Brodsky et al., 2000; Tibi et al., 2003; Husen et al., 2004). If we assume that distant earthquakes were not affected by static stress changes from a main event, these events can be classified as dynamically and/or remotely triggered events by the seismic signal of the main shock.

Figure 2.1: Diagram illustrating the two types of stresses. (A) Static stress caused by natural stresses associated with the fault. (B) Dynamic stress produced by the passing of surface waves.
Dynamic triggering does not appear to depend on the magnitude of the trigger nor distance from the event, but could be a function of the oscillating stress frequency (Velasco et al., 2008). Surface waves can efficiently trigger earthquakes, more than any other seismic phases (Parsons and Velasco, 2008). Dynamic stresses can have much larger amplitude relative to the state changes to alter fault zone properties more effectively in ways that permit a range of time delays between triggering (Brodsky, 2000). Dynamic triggering requires large amplitude seismic waves, such as surface waves, yet a specific threshold along with different frequency ranges may be needed to trigger earthquakes at greater distances away from the main shock. Triggering caused by surface waves can be correlated with crack growth (Brodsky et al., 2000); the presence of fluid flow on certain zones and its dependency with Coulomb stresses (Brodsky et al., 2003). Most important, frequencies and amplitudes of seismic waves could also be associated to triggering of certain events (Brodsky et al., 2005). Also, the orientations of the seismic waves with respect to the local fault geometry are more likely to trigger distance aftershocks (Hill, 2008; Gonzalez-Huizar and Velasco, 2010).

Changes in the mechanical properties or failure processes of a fault do not mean that failure occurs immediately with the passing of the seismic waves. In some cases, a delay may occur. For this reason, there may be a difference in time delay between triggering and triggered earthquakes (Kilb et al., 2000). Furthermore, not all large earthquakes trigger remote seismicity and certain geographic regions appear more susceptible to triggering (Kilb et al., 2000). Subsequently, the time delay between trigger and triggered event may depend on how close the fault was to failure. Time/stress path dependence of failure cannot be represented with a Coulomb failure model (which predicts failure at a particular stress state, independent of rate or time). Permanent stress changes can also contribute to the alteration of fault zone properties, but in this case, these stress changes, could be related more to the proximity of the main shock rupture and not directly connected to dynamic triggering.
Many scientific questions remain about dynamic triggering, including how far from the main event does triggering occur, is there a stress threshold for triggering, does orientation of the passing seismic waves contribute to the triggering stresses, and is there a frequency dependence on triggering potential? This thesis focuses on further analyzing dynamic triggering to study some of these questions.
Chapter 3: Dynamic Earthquake Triggering-Proof of Existence

Dynamic triggering has been widely studied for the past few years. Figure 3.1, shows an example of a triggered event produced by the 11 March, 2011 Japan earthquake. There are three events that show the existence of dynamic triggering. Those events are the 1992 Landers earthquake, the 1999 Hector Mine earthquake and the 2002 Denali Fault earthquake, Alaska.

3.1 Landers Earthquake

28 June 1992. The magnitude 7.3 Landers earthquake ruptured a 70 km length of the Mojave Desert in southern California (Anderson et al., 1994; Hill et al., 1993). Documented seismicity rate increases began within minutes to 33 hours following the main shock (Harris, 1998).

Seismicity rates increased and were recorded at a number of sites across western North America at distances ranging from 200 to as much as 1250 km (17 source dimensions) (Hill et al., 1993). These sites included Long Valley caldera, Lassen Peak, Burney, Ca, the Wasatch front in central Utah, Cascade Idaho, and Yellowstone National Park (Hill et al., 1993).

The Landers main shock resulted in a unilateral rupture propagating to the north-northwest along a series of north-northwest striking dextral fault segments (Gomberg et al., 2001). All of the recognized sites of dynamic triggering were north of the Landers epicenter (Gomberg et al., 2001), suggesting that amplification enhanced by rupture directivity may influence the distribution of dynamic triggering (Hill et al., 1993).

The observed beginning of activity at each site is consistent with an instantaneous increase in local seismicity rate at the time of the Landers main shock.
3.2 Hector Mine Earthquake

16 October 1999. The magnitude 7.1 earthquake ruptured a 40 km length with a fault rupture that was bilateral but with the dominant rupture direction to the south-southeast of the epicenter (Gomberg et al., 2001).

The beginning of the triggered seismicity coincided with arrival of the surface waves from the Hector Mine earthquake (Gomber et al., 2001). The most energetic triggered response to the Hector Mine dynamic stresses was in Salton Trough south of the epicenter (Gao et al., 2000).

Seismicity rates increased and were recorded at a number of sites southeast at distances ranging from ~87 km at the vicinity of Indio to ~750 km at the Geysers geothermal field (Gomberg et al., 2001). The time delayed recorded by triggering rates range from ~20 minutes at Mammoth Mountain (~450 km from epicenter) to ~2 hours at Cierro Prieto (~250 km from epicenter) (Gomberg et al., 2001).

3.3 Denali Fault Earthquake

3 November 2002. This earthquake produces the most extensively recorded remote dynamic triggering. The Denali Fault earthquake was centered 65 km east of Denali National Park, (Alaska) and it was represented by a complex rupture with surface displacement at a maximum of 8.8 meters (Eberhart-Phillips et al., 2003).

The beginning of dynamic triggering developed as a seismicity rate increase during passage of the Love and Rayleigh waves (Husen et al., 2004). All dynamic triggering events recorded were located southeast of the epicenter (Husen et al., 2004).

The time delayed recorded by triggering rates range from ~2.5 hours at Mount Rainer (central Washington, ~3108 km from epicenter) to ~8 days at Yellowstone, Wyoming (~3100 to 3150 km from epicenter) (Pankow et al., 2004). The Denali Fault event triggered dynamically earthquake activity
recorded at distances as great as 3660 km in southeastern California (Coso geothermal field) (Eberhart-Phillips et al., 2003).

The initial activity recorded was \(\sim 130 \) earthquakes occurring in spasmodic burst during the first four hours. Seismicity slowed to \(\sim 35 \) events per day after a few days, but continued to occur for at least ten days (Eberhart-Phillips et al. 2003). Yellowstone produced the most active response (Husen et al., 2004).

Figure 3.1: (a) Seismogram recorded at station F25A in Bowman, SD, USA for the 11 March, 2011, Japan Earthquake (Mw=9.0). (b) Same seismogram window high-pass filtered at a frequency of 5 Hz, showing a zoom-in of the high-pass filtered record indicating the presence of a triggered event inherent under the same seismic signal.
Chapter 4: Data

Data was collected from the EarthScope USArray program funded by the National Science Foundation and operated by the Incorporated Research Institutions for Seismology (IRIS). The EarthScope USArray has deployed a rolling array of 450 Transportable Array (TA) seismic stations, 70 km grid spacing, all over the North American continent. The main goal of USArray is to collect all broadband data to generate a seismological and geophysical database that describes in detail the structure of the subsurface and at the same time, make all these information public to the scientific community. The +450 TA’s stations are moving from West to East with the purpose of covering every part of the U.S. over the 10 years of the project, and each station records for two years before it is moved. For each event recorded, the TA network is in a slightly different position. Each TA station is composed of a three-component broadband seismometer that records in real time and the data is stored and readily accessible using IRIS databases.

Data is composed of two segments. Segment one, initial analysis, is composed of seismograms of $4.0 \leq M \leq 7.5$ of all the events that have been recorded in the U.S. by three reference seismic stations. This segment is intended to generate a threshold to be implemented as part of our algorithm. Segment two, feature analysis, is composed of five events; three teleseismic megathrust events: the Maule, Chile on February 27, 2010 (M 8.8), Tohoku-Oki, Japan on March 11, 2011 (M 9.0), West coast of northern Sumatra on April 11, 2012 (M 8.2 and M 8.6); and two large regional events, the Baja California, Mexico on April 04, 2010 (M 7.2) earthquake, and the Wells Nevada, U.S., on February 21, 2008 (M 6.0). Segment two, is the process of implementing this threshold value into an algorithm suitable of detecting triggered events after the passing of surface waves.
Chapter 5: Software Required

5.1 SOD
Standing Order for Data (SOD), created by the University of South Carolina, is a powerful and flexible Data Handling Interface (DHI) data request utility. SOD automates selection and downloading of earthquake data and allows the user to define data gathers based on earthquake magnitude, the location of earthquakes and recording stations, and the time bias around specific seismic phase arrivals.

SOD, in the form of an XML file (Recipe) (Appendix A), specifies the earthquakes, channels and seismograms of interest. SOD repeatedly checks DHI event catalog services from a number of data centers and acts on earthquakes that match to the standing order. Once this occurs, SOD then contacts the DHI waveform services from these data centers and follows the standing order instructions as to the stations, channels and time parameters requested in order to collect data that the user wants. The data is transferred to the user’s computer in an automated fashion. SOD is capable of post-processing operations on the data stream such as mean removal, saving data to a SAC or miniSEED file.

5.2 SAC
Seismic Analysis Code (also known as SAC2000), is a signal processing and analysis code that has been developed by Lawrence Livermore National Laboratory (LLNL) over the past 25 years for a variety of seismic and geophysical research projects. SAC is an interactive program designed for the study of sequential signals, especially time-series data. Emphasis has been placed on analysis tools used by research seismologist in the detail study of seismic events. Analysis capabilities include general arithmetic operations, Fourier transforms, three spectral estimation techniques, IIR and FIR filtering, signal stacking, decimation, interpolation, and seismic phase picking. SAC also contains an extensive graphics capability.

SAC is used extensively by the seismic community because it has a broad range of well-tested, efficient data analysis capabilities (examples include: data inspection, phase picking, signal correction,
quality control, binary data operations, travel-time analysis, spectral analysis including high-resolution spectral estimation, spectrograms and binary sonograms, and array and three-component analysis). It is reliable and easy to use, has a macro programming language that allows users to develop innovative new analysis techniques. Figure 5.1(a), shows an example of an event using SAC software.

5.3 ANTELOPE

Boulder Real Time Technologies, Inc. (BRTT) provides the Antelope software package. Antelope is a system of software modules that implement acquisition, transport, buffering, processing, archiving and distribution of environmental monitoring information. It is an integrated collection of programs for data collection and seismic data analysis, and typically runs at the central processing site. The data are stored in a flat file CSS3.0 style database, which allows for processing large amounts of data.

Antelope has an open architecture, with extensive documentation of internal interfaces. The Antelope real time system is built around a large, flexible, non-volatile ring buffer. Data acquisition modules communicate with data loggers, and leave data on the ring buffer. The ring buffer protocol provides a convenient method for directly importing data from the other sites, as well as exporting data. For instance, the detector reads data from the ring buffer and writes detections to the orb. The grid associator reads the detections and quickly provides preliminary event locations. This architecture facilitates running multiple detectors or associators, and other refinements. Figure 5.1 (b), shows an example of an event using Antelope software.
Figure 5.1: (a) Seismograms from the Japan Earthquake (East coast of Honshu, Japan M 9.0, March 11, 2011) displaying its three components (R, T, Z). (a) Seismogram recorded at ANVS station (KYRGYZ Network), analyzed using sac2000 software. (b) Same seismogram as in (a) but now using Antelope software, indicating all STA/LTA detections.
Chapter 6: Methodology

6.1 Triggering Detection

For each of the five seismic events main shock, at each station, an automated search for high frequency detections (HFD) that potentially indicate a remotely triggered earthquake have been applied. Antelope software, have give us the opportunity to explore different automatic detection algorithms focusing on developing a suitable detector that can identify events or spurious detections and other possible high frequency noise. The procedure was to acquire the require information, generate Antelope database files, apply a STA/LTA algorithm, high pass filter the seismograms and finally, analyze the results in order to identify all potential detections that could be associate with dynamic triggering.

6.2 Short Term Average/Long Term Average

The Short Term Average/Long Term Average (STA/LTA) (Appendix B), is the ratio between the amplitude, computed as the norm (average of the absolute values), of the signal on a short time window of length STA and on a long time window of length LTA. At a given point STA/LTA is computed for the time windows preceding the point. For the first signal points, where there are not enough preceding data points to compute the complete LTA and/or STA, the average of the whole signal is used for the missing points. The STA/LTA will detect on one or more channels of the waveform data and write the detection inside an output database. For each channel of the database, Antelope can run multiple detections, on the same channel of the data with different frequency passbands. The implementation of a STA/LTA was used in early seismological applications to decrease the computation time. It does not modify the results and can effectively produce threshold values gather from all detectors run.
6.3 **Signal Filtering**

Seismograms were analyzed utilizing a time window of 5 hours before and 10 hours after the main shock of the event. This specific range of time before and after the event, allow for the opportunity to apply to the signal a high-pass filter (~5 Hz) to identify if any event have been ‘hidden’ into the primary surface wave, as illustrated in Figure 3.1 (e.g., Velasco et al., 2008). Applying a 5 Hz high-pass filter to seismograms enhances the local earthquakes for detection of possible triggered events. It efficiently eliminates long period surface waves, eliminates the main shock coda waves at distances beyond 500 km and also eliminates other high-frequencies signals, like noise.

6.4 **Identification of Triggered Events**

To identify possible triggered events, all HFD’s have been added along the group velocities curves for Love and Rayleigh waves. We have created histograms for detections using bins of peak amplitudes with a window of 300 seconds (Velasco et al., 2008). By using this procedure, it is expected to see evidence of delayed dynamic triggering from the arrival of Love and Rayleigh waves. To qualitatively identify whether the increase in HFD’s is significant and to correlate the passage of seismic energy from the main shock, each waveform that has been identified as a potential triggered event was analyzed in amplitude and frequency.
Chapter 7: Analysis and Results

7.1 Segment One. Initial Analysis

Initial data is composed of seismograms recorded in the U.S. continent by three reference stations as described in Table 7.1, in order to explore our detectors (STA/LTA) to make sure we are detecting local events. This set of seismograms waveforms were downloaded for local events with a distance range of ≥ 1000 km from each station, using a time frame from January 01 to December 31, 2007. Thus, we analyze 1 year of continuous data.

Table 7.1: Seismic Network Information summarizing reference stations parameters.

<table>
<thead>
<tr>
<th>NETWORK STATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION</td>
</tr>
<tr>
<td>ANMO</td>
</tr>
<tr>
<td>R11A</td>
</tr>
<tr>
<td>TX31</td>
</tr>
</tbody>
</table>

Data is composed of ~1000 seismograms for each respectively station. All information was requested to IRIS using SOD, and stored in the Geological Science Department data servers. All waveforms were analyzed using SAC software. Information gathered from SOD comes with a specific extension. It was necessary to convert from SOD to SAC extension in order to be executed and analyzed by SAC software. We then created the Antelope database. Once the information is readable by SAC and Antelope, all seismograms were analyzed visually to detect and sort cleanest signals. Not all seismograms were useful and it was necessary to remove bad traces with incomplete or noisy surface wave recording, in some cases, the presence of excessive noise might interfere with an accurate reading. Approximately, +1000 seismograms were analyzed.
We explore the duration of local to teleseismic signals for our STA/LTA detector by calculating the energy envelope of our signals. To obtain the envelope of every signal, the Hilbert transform was implemented as part of the macro mentioned before. The Hilbert transform can be considered to be a filter that simply shifts phases of all frequencies components of its input by \(-\pi/2\) radians. One of SAC applications allows us to implement a macro in order to reproduce the envelope of the analytic signal for a better visualization and interpretation. The SAC macro could be found in Appendix C. A complex time signal (analytic signal) can be constructed from a real valued input signal by adding the input signal and the Hilbert transform of the original input signal. From the result, the amplitude of the analytic signal is considered to be the enveloped of the signal. Figure 7.1 shows an example of a seismic waveform and its envelope package.

Figure 7.1: Seismogram and its envelope signal. Event recorded at station R11A on September 02, 2007 at 01:05:18 UTC. Santa Cruz Islands. Mag. 7.2
In order to obtain the signal time duration, the waveforms were analyzed by measuring two different parts of the signal, one from the beginning of the P-wave (T1) to the end of the surface wave (T2) and a second measurement, for the complete surface wave (T3-T4), as shown in Figure 7.2. Coda measurements were eliminated from this approach due to the fact that only the values of the main signal spectra were intended to give a more accurate threshold values. We are using the different duration to explore the STA/LTA parameters to use for our analysis.

Figure 7.2: Seismogram showing signal time duration. Beginning of P (T1) to end surface wave (T2). Beginning of surface wave (T3) to end surface wave (T4)
7.1.2 STA/LTA Algorithm

The results gathered from analyzing all the previous seismic waveforms has given us the opportunity to developed different set of parameters. We used the Antelope software, to develop and test an automated detection algorithm. Table 7.2 shows the initial set of parameters, D and E, implemented as part of the STA/LTA algorithm at the beginning of this project. The STA/LTA algorithm can be fund in Appendix B.

<table>
<thead>
<tr>
<th>DBDETECTPAR CODE</th>
<th>NAME</th>
<th>STA (sec)</th>
<th>LTA (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>High Frequency</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>E</td>
<td>Emergent</td>
<td>10</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 7.3: Second set of parameters of STA/LTA algorithm

<table>
<thead>
<tr>
<th>DBDETECTPAR CODE</th>
<th>NAME</th>
<th>STA (sec)</th>
<th>LTA (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV1</td>
<td>Event 1</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>EV2</td>
<td>Event2</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>EV3</td>
<td>Event 3</td>
<td>16</td>
<td>160</td>
</tr>
</tbody>
</table>

The algorithm computes different types of detectors (depending of the set of parameters) to identify possible triggering in local events. The STA/LTA was tested in reference stations R11A, TX31 and ANMO first to obtain preliminary outcomes. All these parameters were adjusted to different windows lengths and having a critaria of 3.5 for the average of the signal. This algorithm was applied to all vertical component seismograms. A linear regression was calculated from all the results gathered in order to have a better understanding of the behavior/performance of the results. The graphs 7.3 to 7.8 show results for the most suitable detector, (Ev2 detector), displaying detections plotted using a 24-hour window versus number of detectors identified. Results are shown in the following figures.
Figure 7.3: Reference station ANMO. Plots showing number of events recorded for local events versus station distance. Data covers all 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the P-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station.

Figure 7.4: Reference station ANMO. Plots showing number of events recorded for local events versus station distance. Data covers year 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the surface-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station.
Figure 7.5: Reference station R11A. Plots showing number of events recorded for local events versus station distance. Data covers all 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the P-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station.

Figure 7.6: Reference station R11A. Plots showing number of events recorded for local events versus station distance. Data covers year 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the surface-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station.
Figure 7.7: Reference station TX31. Plots showing number of events recorded for local events versus station distance. Data covers all 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the P-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station.

Figure 7.8: Reference station R11A. Plots showing number of events recorded for local events versus station distance. Data covers year 2007. Red line shows the regression value calculated for the signal analysis. (a) Analysis from the beginning of the surface-wave to end of surface wave. (b) Same data but now, data has been reduced to 5000 km from the station.
Ev2 shows a more accurate response for possible triggered events. The number of events detected shows events with a distance in average of 80 km from the station, given a better prediction of local events identified for each station. By using this approach we are eliminating any possible aftershocks or high frequency noise that could be erroneously counted as triggered. For example, detector Ev1, shows detections close to the stations (~10-30 km) that could be easily mistaken with static stresses and not remotely triggered. To quantify and minimize uncertainties, we have neglected information greater than 100 events near the station and have narrowed the station distance to 5000 km from each station.

One of the challenges is to determine what noise could be contaminating our results. We stack our detections on hourly bins for all three stations, and plot the number of detections for each detection type (Figures 7.9-7.11). While analyzing the results from the reference stations, we note a significant increment of detections during the 12 and 15 hour. This increase in detections could possibly be an indication of man-made noise captured and recorded by the seismic stations (city noise as traffic, contructions, etc). Further studies could be conducted to identified if certain time ranges could influence any changes in frequency spectra recorded at seismic stations.
Figure 7.9: Reference station ANMO. Plot shows the different algorithm parameters and their performance. Data evaluated over one year period (2007). Data plotted in a 24-hour window versus number of events.

Figure 7.10: Reference station R11A. Plot shows the different algorithm parameters and their performance. Data evaluated over one year period (2007). Data plotted in a 24-hour window versus number of events.
Figure 7.11: Reference station TX31. Plot shows the different algorithm parameters and their performance. Data evaluated over one year period (2007). Data plotted in a 24-hour window versus number of events.

7.2 **SEGMENT TWO. FEATURE ANALYSIS**

Segment two of this investigation deals with the application of the algorithm applied to five events that provide a full range of seismic wave amplitudes and orientations across the footprint of the USArray seismic stations. These events are two teleseismic megatrust events, the Maule, Chile on February 27, 2010 (M 8.8), Tohoku-Oki, Japan on March 11, 2011 (M 9.0); two large strike-slip earthquakes, West coast of northern Sumatra on April 11, 2012 (M 8.2 and 8.6); and two large regional events, the strike-slip Baja California, Mexico on April 04, 2010 (M 7.2) earthquake, and the normal fault Wells Nevada, U.S., on February 21, 2008 (M 6.0).
7.2.1 –Seismic Network and Seismic Stations

This investigation has been focused on using the Transportable Array (TA) network. This seismic network has the capability of generate all the information necessary due to its features and extensive coverage. For all of the events, Table 7.2.1 shows the description of the network and, table 7.2.2 shows a detail list of all the stations that are covered under the TA's network.

Table 7.4: Seismic Network

<table>
<thead>
<tr>
<th>NETWORK CODE</th>
<th>NETWORK NAME</th>
<th>NETWORK OPERATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>U.S.Array Transportable Array</td>
<td>Earthscope Project (IRIS)</td>
</tr>
</tbody>
</table>
Table 7.5: List of Transportable Array (TA) stations.

<table>
<thead>
<tr>
<th>TRANSPORTABLE ARRAY (TA) STATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>058A</td>
</tr>
<tr>
<td>059A</td>
</tr>
<tr>
<td>059A</td>
</tr>
<tr>
<td>060A</td>
</tr>
<tr>
<td>109C</td>
</tr>
<tr>
<td>121A</td>
</tr>
<tr>
<td>140A</td>
</tr>
<tr>
<td>141A</td>
</tr>
<tr>
<td>142A</td>
</tr>
<tr>
<td>143A</td>
</tr>
<tr>
<td>144A</td>
</tr>
<tr>
<td>145A</td>
</tr>
<tr>
<td>146A</td>
</tr>
<tr>
<td>147A</td>
</tr>
<tr>
<td>148A</td>
</tr>
<tr>
<td>149A</td>
</tr>
<tr>
<td>150A</td>
</tr>
<tr>
<td>151A</td>
</tr>
<tr>
<td>152A</td>
</tr>
<tr>
<td>153A</td>
</tr>
<tr>
<td>154A</td>
</tr>
<tr>
<td>155A</td>
</tr>
<tr>
<td>156A</td>
</tr>
<tr>
<td>214A</td>
</tr>
<tr>
<td>240A</td>
</tr>
<tr>
<td>241A</td>
</tr>
<tr>
<td>242A</td>
</tr>
<tr>
<td>244A</td>
</tr>
<tr>
<td>245A</td>
</tr>
<tr>
<td>246A</td>
</tr>
<tr>
<td>247A</td>
</tr>
<tr>
<td>248A</td>
</tr>
<tr>
<td>249A</td>
</tr>
<tr>
<td>250A</td>
</tr>
<tr>
<td>251A</td>
</tr>
<tr>
<td>252A</td>
</tr>
<tr>
<td>253A</td>
</tr>
<tr>
<td>254A</td>
</tr>
<tr>
<td>255A</td>
</tr>
<tr>
<td>256A</td>
</tr>
<tr>
<td>257A</td>
</tr>
<tr>
<td>341A</td>
</tr>
<tr>
<td>342A</td>
</tr>
<tr>
<td>343A</td>
</tr>
<tr>
<td>344A</td>
</tr>
<tr>
<td>345A</td>
</tr>
<tr>
<td>347A</td>
</tr>
<tr>
<td>348A</td>
</tr>
<tr>
<td>349A</td>
</tr>
<tr>
<td>350A</td>
</tr>
</tbody>
</table>
7.2.2 –Love and Rayleigh Wave Analysis

It has been assumed that the passing of seismic waves will change critical stress forces and trigger dynamically. To demonstrate that triggering occurs during the passage of surface waves, we obtained, for all stations, their respective latitude, longitude and azimuth. Also, for each detection, the respective latitude and longitude, was obtained and created station-distance and time-distance relationships. We have assumed that the typical velocity for Love waves to be $V_L = 4.3 \text{ km/s}$ and for Rayleigh waves to be $V_R = 3.5 \text{ km/s}$. Then, we added the number of detections obtained along the group velocity curves for Love and Rayleigh waves creating time-reduced histograms. The time-reduced values were calculated by multiplying the distance of each station in degrees by 111.19 (value for a degree) to obtain the distance in km. These will show that the activity that increases with the arrival of seismic waves is more confidentially identified as triggered. To eliminate high frequency detections from noisy stations caused by external factors, we have delimited our detection frequency number to be at a maximum of 60 events for each station (when available); this must also restrict the number of possible aftershocks that could be erroneous counted as triggered. To test the significance of the number of detections, we computed the mean of all the events that have been separated in the 300 seconds bins before and after the main event. Approximating a Poisson distribution, we computed the confidence intervals for each of the events.

I noted that the triggered earthquakes occurred during the first few cycles of the Love waves, and occurred again during the large amplitude Rayleigh waves.

However, I only examine the continuous data within several hours before and after the P-arrivals of each earthquake, to assure continuous recording, this time frame has been sufficient to calculate the time velocities for the respective Love and Rayleigh waves for each of the events.

Our modeling results show that the triggering potential for the Love waves are larger than for those of the Rayleigh waves (Gonzales-Huizar and Velasco, 2012). Locally triggered events during the
Love wave generally have larger amplitudes than the local events during Rayleigh waves. Nonetheless, results shows clear dynamic triggering for the two types of surface waves. This could be associated to the fact that all the events that were analyzed for this project has been of reasonable magnitudes or in close distance to dense seismic stations.

Another characteristic that was recognized in our study was that for our events of M>8.0 the average depth was about ~24 km, while for those of magnitude between 6.0< M >7.5, it was found to be between the range of ~5 km. According to Chao and Peng (2009), the reductions of seismic group velocities are generally on the order of a few percent for large nearby earthquakes, meaning that at shallow depths it could be found a reduction of seismic velocities in the crust during the passage of large amplitude surface waves. That means that deep earthquakes can only generate long-period fundamental Rayleigh waves, whereas shallow earthquakes generate broader-band surface waves. This information can also be a factor leading to the result of triggered events found at certain ranges with an increase or decrease in number of events. Many of these possible events are not found in seismic earthquake catalogs. For this reason, we do not know their exact location and/or focal mechanism.

In a recent study Pollitz (2012), stated that triggered events are not preferentially located in the near field, where dynamic strain magnitudes are high, but rather are distributed uniformly over the globe. His conclusion was founded after a study performed for the Sumatra earthquake following almost an equivalent method like the one we used. They also found that small events triggered by passage of seismic waves, whether instantaneous or delayed, depend more than dynamic strain amplitude. His results shown events that produced earthquake nucleation recorded as far as Baja California, Mexico. Nonetheless, to produce earthquake nucleation, the stress changes from seismic waves must arrange satisfactorily with the faults that they pass through.

Different surface wave amplitudes carry different levels of energy. All these energies carry distinctive characteristics and interact producing specific ground shakings for specific fault orientations.
Different attributes need to be explored for future studies, such as peak amplitudes, frequency content, the amplitude associated with each frequency, energy content, energy carried by ground shaking at each frequency band and/or the entire duration of strong shakings. Finally, attenuation is a key feature while dealing with surface waves, the earth itself acts as a natural big filter.
Baja California Earthquake

Figure 7.12: Baja California, Mexico earthquake. Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.13: Baja California, Mexico earthquake. Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.
The zero time line, on both histograms, corresponds to the arrival of Love- and Rayleigh- waves (respectively) (Figures 7.12 and 7.13). The green dashed line represents our confidence boundary, the closest to the boundary; the more confident we are that that bin has been triggered. The time of the main shock; for Baja California earthquake, is recorded at epoch time 1270420843.100 (22:40:43.100 UTC). The first detection for Love waves is found at epoch time 1270420882.17566 (22:41:22.17566 UTC) having ~39.1 seconds difference between the main shock and the first time arrival detected. Each window has an equivalent of 300 seconds bins and in each bin, the corresponding number of reduced-time events that fall into that specific time slot. This first detection was recorded in station P29A located in Atwood, KS.

I identified a clear shift in time delayed between Love and Rayleigh waves due to ground time velocity. There appears to be a general pattern of events identified/triggered along this event. The number of detections for this result, could possibly better detect potential and temporal local changes associated with triggered activity.

Given that the distribution has a mean of 15 events per bin and a standard deviation of 5, the total number of detections laying between the mean minus standard deviation (10) and the mean plus standard deviation (20 events per bin), the number of detections between the standard deviation around the mean is 624. Considering that the total number of events is 908, my confidence of events detected is approximately 70%.
Figure 7.14: Chile earthquake. Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.15: Chile earthquake. Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.
The zero time line corresponds to the time of the Love- and Rayleigh-wave arrivals (respectively) (Figures 7.14 and 7.15). For the main shock, the time recorded in this case, is at 1267252451.530 (06:34:11.53000 UTC). The first detection for Love waves is at 1267252469.90105530 (06:34:29.90105 UTC) having ~18.1 seconds difference between waves, suggesting that most of the detections recorded are found immediately after the passage of the Love-wave signal. The difference in time of the recorded detector suggest that time may be a factor influencing frequencies of surface waves. Also, the radiation pattern may be a key feature in dynamic triggering. This first detection was recorded in station J20A situated in Shoshoni, WY.

Similar results were found for this particular event. There is a clear shift in time delayed between Love and Rayleigh waves and there is also a general pattern in detections. Given that the distribution has a mean of 10 events per bin and a standard deviation of 5, the total number of detections lying between the mean minus standard deviation (5) and the mean plus standard deviation (15 events per bin), the number of detections between the standard deviation around the mean is 549. Considering that the total number of events is 608, my confidence of events detected is approximately 90%.
Japan Earthquake

Figure 7.16: Japan earthquake. Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.17: Japan earthquake. Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.
The zero time line on both histograms corresponds to the time of Love- and Rayleigh-wave arrivals (respectively) (Figures 7.16 and 7.17). The time recorded for the main shock; in this case, is at 1299822384.120 (05:46:24.12000 UTC). The first detection of Love-waves is at 1299822405.12605 (05:46:45.12605 UTC) having ~20 seconds difference between the main shock and the first detector. This first detection was recorded in station L35A situated in Bielow Farm, Ricketts, IA.

I noticed from the results a reduction in the seismic activity right after the main shock. This could be due an alteration of potential energy accumulated in the tectonism. There is a sudden increase in detections recorded right after the passage of the main signal, having a similar response to the Chile event; in this case, the radiation pattern will be more horizontal compared with a vertical pattern of surface waves traveling around the globe. The difference between the Love- and Rayleigh- waves reduced time is clearly seen in the histograms above, both seismic waves, shown potential for triggering right after the main shock. This particular event also shows a reduction in overall detections; we have mentioned early that we have detected a particular pattern of triggered events for particular day-time, the Japan earthquake occurred on a Friday just before weekend possible reducing external noise.

Given that the distribution has a mean of 10 events per bin and a standard deviation of 4, the total number of detections lying between the mean minus standard deviation (6) and the mean plus standard deviation (14 events per bin), the number of detections between the standard deviation around the mean is 518. Considering that the total number of events is 620, my confidence of events detected is approximately 80%.
Nevada Earthquake

Figure 7.18: Nevada earthquake. Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.19: Nevada earthquake. Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.
In this case, the time for the main shock is at 1203603362.710 (14:16:02.71000 UTC) (Figures 7.17 and 7.19). The first detection for Love-waves is at 1203603376.82527 (14:16:16.082527 UTC) ~14 seconds difference between waves.

The event in Nevada, clearly show triggering of events, it also enhanced the seismic activity in the region, from an average of ~20 events prior to almost ~45 after the main shock. We can clearly notice a variation in the potential energy accumulated in the global tectonic environment. This earthquake, better predict potential and temporal local changes associated with a higher triggered activity. Fifteen bins over pass our confidence interval. One reason for having such number of detections could be attributed that that zone have been highly studied for last couple of years, having a dense network of seismograms deployed all over the region. For this specific event, it was necessary to decrease the study region associated to network stations; we just considered stations with a 500 km radius from the event to account just for local events produced by this event. This first Love–wave detection was recorded in station M11A situated in Holland Ranch, North Fork, NV.

Given that the distribution has a mean of 33 events per bin and a standard deviation of 16, the total number of detections laying between the mean minus standard deviation (17) and the mean plus standard deviation (49 events per bin), the number of detections between the standard deviation around the mean is 1164. Considering that the total number of events is 2073, my confidence of events detected is approximately 57%.
Sumatra Earthquake (M 8.6)

Figure 7.20: Sumatra earthquake (M 8.6). Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.21: Sumatra earthquake (M 8.6). Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.
In this case, the time for the main shock is at 1334133516.720 (08:38:36.72000 UTC) (Figures 7.20 and 7.21). The first detection for Love-waves is at 1334133543.00014 (08:39:03.00014 UTC) having ~26 seconds difference between them. This first Love-wave detection was recorded in station 447A situated in Lucedale, MS.

I noticed that the passage of seismic waves produced an instantaneous suppression or drop in seismic activity followed again by an increased in activity. We later see another suppression which suggests a possible cyclic sequence of suppression and enhancement in seismic activity. Additional triggered events at later times could escape our detection mechanism. Here, we also noticed the time delayed changes between Love and Rayleigh time velocities.

Given that the distribution has a mean of 39 events per bin and a standard deviation of 14, the total number of detections lying between the mean minus standard deviation (25) and the mean plus standard deviation (53 events per bin), the number of detections between the standard deviation around the mean is 1911. Considering that the total number of events is 2414, my confidence of events detected is approximately 80%.
Figure 7.22: Sumatra earthquake (M 8.2). Time reduced histogram for Love wave group velocity (4.3 km/s) showing the number of possible triggered events grouped in 300 sec. bins.

Figure 7.23: Sumatra earthquake (M 8.2). Time reduced histogram for Rayleigh wave group velocity (3.5 km/s) showing the number of possible triggered events grouped in 300 sec. bins.
For this event, the time for the main shock is at 1334140990.850 (10:43:10.85000 UTC) (Figures 7.22 and 7.23). The first detection for Love waves is found at 1334141009.27509 (10:43:29.27509 UTC) having ~18 seconds difference between the main shock and the first Love-wave time arrival. This first detection was recorded in station X52A situated in Dahlonega, GA.

For this event we found a sequence of enhancement-suppression-enhancement of detections which suggests that both of Sumatra earthquakes have a similar combination of (enhancement-suppression) behavior that we cannot see in other events. Another attribute for this event, is that there is only a difference of ~2 hours from each event, possible indicating that there were different or large amplitudes with short durations for a specific period of time.

Given that the distribution has a mean of 47 events per bin and a standard deviation of 11, the total number of detections lying between the mean minus standard deviation (36) and the mean plus standard deviation (58 events per bin), the number of detections between the standard deviation around the mean is 2374. Considering that the total number of events is 2887, my confidence of events detected is approximately 82%.
Chapter 8: Conclusions

Observations indicate that transient dynamic deformations trigger earthquakes, the physical mechanisms by which they do so, remain unknown. Here we presented a new analytical technique to test for the existence of and to estimate dynamic triggering detection.

The purpose of this investigation focused in studying the effects of surface waves properties in order to trigger earthquakes along their path. The method presented here is a simple and dynamic technique to investigate the effects of high magnitude earthquakes and the responses pre- and post-seismic recorded at different seismological stations to be capable of producing new earthquake nucleation far away from the main event. By analyzing surface waves (Love, Rayleigh), the opportunity to find events that could be hidden into the signal train has been determined by applying a high pass filter to the signal (~5 Hz); then, a STA/LTA algorithm has been applied to determine the number of occurrence of HFD’s.

After analyzing five teleseismic events and using all the tools and resources that the USArray has implemented, the acquisition of high quality seismograms has been possible. The number of HFD’s is a determinant factor to associate the passage of seismic surface waves to analytically address the correlation in detections obtained and compared them with the seismogram frequency content. This observation indicated that input wave amplitude plays an important role in controlling the triggering nucleation and the resulting amplitudes of the triggered events. Our results are consistent with the theory of dynamic triggering, in other words, triggered events, which are more likely to be located near the velocity strengthening of the Love wave are normally aseismic and can be driven by large dynamic stresses.
References

Appendix

APPENDIX A: INPUT FILES FOR SOD RECIPE.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<sod>
  <eventArm>
    <eventFinder>
      <name>..
      <dns>edu/iris/dmc</dns>
      <originTimeRange>
        <startTime>99990101T11:59:59.000Z</startTime>
        <endTime>99990101T11:59:59.000Z</endTime>
      </originTimeRange>
      <magnitudeRange>
        <min>M</min>
      </magnitudeRange>
      <catalog>TYPE</catalog>
    </eventFinder>
    <printlineEventProcess/>
  </eventArm>
  <networkArm>
    <networkFinder>
      <name>Network</name>
      <dns>edu/iris/dmc</dns>
    </networkFinder>
    <networkOR>
      <bandCode>BAND</bandCode>
      <printlineChannelProcess/>
    </networkOR>
    <originOffsetRequest>
      <beginOffset>
        <unit>HOUR</unit>
        <value>-5</value>
      </beginOffset>
      <endOffset>
        <unit>HOUR</unit>
        <value>5</value>
      </endOffset>
    </originOffsetRequest>
    <fixedDataCenter>
      <name>IRIS_DataCenter</name>
      <dns>edu/iris/dmc</dns>
    </fixedDataCenter>
  </networkArm>
</sod>
```
<someCoverage/>
<printlineSeismogramProcess/>
<sacWriter/>
<merge/>
<rMean/>
<rTrend/>
<taper>
 <width>.05</width>
 <type>HANNING</type>
</taper>
<taper/>
<vectorTrim/>
<rotateGCP/>
<sacWriter>
 <workingDir>DIR</workingDir>
 <phaseTimeHeader>
 <model>ak135</model>
 <phaseName>ttp</phaseName>
 <tHeader>a</tHeader>
 </phaseTimeHeader>
</sacWriter>
<legacyExecute>
 <command>echo Sod saved this file</command>
</legacyExecute>
</waveformVectorArm>
</sod>
APPENDIX B: INPUT FILES FOR STA/LTA ALGORITHM.

Parameter files for dbdetect
Following are required and are used as overall defaults
ave_type rms # Method for averaging (rms or filter)
sta_twin 1.0 # short term average time window
sta_tmin 1.0 # short term average minimum time for average
sta_maxtgap 0.5 # short term average maximum time gap
lta_twin 10.0 # long term average time window
lta_tmin 5.0 # long term average minimum time for average
lta_maxtgap 4.0 # long term average maximum time gap
nodet_twin 1.0 # no detection if on time is less than this
pamp 500.0 # plot amplitude
thresh 3.5 # detection SNR threshold
threshoff 2.0 # detection-off SNR threshold
det_tmin 10.0 # detection minimum on time
det_tmax 100.0 # detection maximum on time
h 0 # plot channel height in pixels
filter BW 1 4 20 4 # default filter
iphase D # default iphase for detections
process_twin 500.0 # data is processed in hunks of this duration

At least one default band must be set up in the bands table
Parameter values override default values above for each band
bands &Tbl{
 &Arr{
 sta_twin 1.0
 sta_tmin 1.0
 sta_maxtgap 0.5
 lta_twin 10.0
 lta_tmin 5.0
 lta_maxtgap 4.0
 pamp 500.0
 filter BW 5.0 4 0 0
 iphase D
 }
 &Arr{
 sta_twin 10.0
 lta_twin 60.0
 filter BW 5.0 4 0 0
 iphase E
 }
 &Arr{
 sta_twin 4.0
 sta_tmin 4.0
 sta_maxtgap 0.5
 lta_twin 40.0
 lta_tmin 30.0
 }
}
lta_maxtgap 2.0
pamp 500.0
filter BW 5.0 4 0 0
iphase Ev1

&Arr{
 sta_twin 8.0
 sta_tmin 8.0
 sta_maxtgap 0.5
 lta_twin 80.0
 lta_tmin 60.0
 lta_maxtgap 2.0
 pamp 500.0
 filter BW 5.0 4 0 0
 iphase Ev2
}

&Arr{
 sta_twin 16.0
 sta_tmin 16.0
 sta_maxtgap 0.5
 lta_twin 160.0
 lta_tmin 100.0
 lta_maxtgap 2.0
 pamp 500.0
 filter BW 5.0 4 0 0
 iphase Ev3
}

At least one data channel must be specified in the station channel table
stachans &Tbl{
 .* BHZ | 00BHZ | 10BHZ | HHZ | 00HHZ | 10HHZ
}
channels to reject in the processing
reject &Tbl{ }
cut off
xlim off
setbb ofile 1-env
getbb ofile
r 1
hilbert
sqr
w j1
r
sqr
ddf j1
sqrt
w %ofile
Vita

Ibrahim Cerda was born on April 10, 1976 in Cd. Juarez, Chihuahua, Mexico. The second son of Jose Luis Cerda, Ms and Elvia Solis de Cerda, he graduated from The University of Texas at El Paso with a Bachelor of Science degree in Electrical and Computing Engineering in the summer of 2004. A second Bachelor of Science degree in Environmental Science with a concentration in Geology, in the spring of 2010.

In the summer of the same year, he enrolled in the Geophysics graduate program at The University of Texas at El Paso, having as a mentor, graduate and thesis advisor professor Aaron A. Velasco, PhD.

Permanent address: Lakehurst Dr.

El Paso, Texas, 79912

This thesis was typed by Ibrahim Cerda.