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Abstract—One of the main ideas behind fuzzy logic and its
applications is that everything is a matter of degree. We are
often accustomed to think that every statement about a physical
world is true or false — that an object is either a particle
or a wave, that a person is either young or not, either well
or ill — but in reality, we sometimes encounter intermediate
situations. In this paper, we show that the existence of such
intermediate situations can be theoretically explained — by a
natural assumption that the real world is cognizable.

I. EVERYTHING IS A MATTER OF DEGREE: ONE OF THE
MAIN IDEAS BEHIND Fuzzy LOGIC

One of the main ideas behind Zadeh’s fuzzy logic and its
applications is that everything is a matter of degree.

We are often accustomed to think that every statement
about a physical world is true or false:

« that an object is either a particle or a wave,
« that a person is either young or not,
« that a person is either well or ill,

but in reality, we sometimes encounter intermediate situa-
tions.

II. FORMULATION OF THE PROBLEM

That everything is a matter of degree is a convincing
empirical fact, but a natural question is: why? How can we
explain this fact?

This is what we will try to do in this paper: come up with
a theoretical explanation of this empirical fact.

III. THERE SHOULD BE AN OBJECTIVE THEORETICAL
EXPLANATION

Most traditional examples of fuzziness come from the
analysis of commonsense reasoning. When we reason, we
use words from natural language like “young”, “well”. In
many practical situations, these words do not have a precise
true-or-false meaning, they are fuzzy. One may therefore
be left with an impression that fuzziness is a subjective
characteristic, it is caused by the specific way our brains
work.

However, the fact that that we are the result of billions
of years of successful adjusting-to-the-environment evolution
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makes us conclude that everything about us humans is not
accidental. In particular, the way we reason is not accidental,
this way must reflect some real-life phenomena — otherwise,
this feature of our reasoning would have been useless and
would not have been abandoned long ago.

In other words, the fuzziness in our reasoning must have
an objective explanation — in fuzziness of the real world.

IV. WHAT WE PLAN TO DO

In this paper, we first give examples of objective real-world
fuzziness. After these example, we provide an explanation of
this fuzziness — in terms of cognizability of the world.

V. FIRST EXAMPLE OF OBJECTIVE “FUZZINESS” —
FRACTALS

The notion of dimension has existed for centuries. Already
the ancient researchers made a clear distinction between 0O-
dimensional objects (points), 1-dimensional objects (lines),
2-dimensional objects (surfaces), 3-dimensional objects (bod-
ies), etc.

In all these examples, dimension is a natural number: 0,
1,23, ...

Since the 19th century, mathematicians have provided
a mathematical extension of the notion of dimension that
allowed them to classify some weird mathematical sets as
being of fractional (non-integer) dimension, but for a long
time, these weird sets remained anomalies.

In the 1970s, B. Mandlebrot noticed that actually, many
real-life objects have fractional dimension, ranging from
the shoreline of England to the shape of the clouds and
mountains to noises in electric circuits (to social phenomena
such as stock prices). He called such sets of fractional (non-
integer) dimension fractals; see, e.g., [7], [8], [9].

It is now clear that fractals play an important role in
nature. So, what we originally thought of as an integer-valued
variable turned out to be real-valued.

VI. SECOND EXAMPLE OF OBJECTIVE “FUZZINESS” —
QUANTUM PHYSICS

Until the 19th century, physical phenomena were described
by classical physics. In classical physics, some variables are
continuous, some are discrete.

For example, the coordinates and velocities of particles
usually take continuous values. However, if we are interested
in stable states or periodic trajectories, we often end up with
a discrete set of stable states.

This discreteness underlies most engineering implementa-
tions of computers: to represent O or 1, we select an object



with 2 possible states, and use one of these states to represent
0 and another to represent 1.

In the 20th century, however, it turned out that a more
adequate description of the physical world comes from
quantum physics. One of the peculiar features of quantum
physics is the so-called superposition principle (see, e.g., [2])
according to which with every two states (0] and (1], it is
also possible to have “intermediate” states (superpositions)
¢o - (0] + ¢1 - (1] for all complex values cg and ¢; for which
2 + |c1 2 = 1.

So, what we originally thought of as an integer-valued
variable turned out to be real-valued.

co

Comment. It is worth mentioning that these quantum com-
binations of 0 and 1 states are not only happening in real
life, but, as it was discovered in the 1990s, their use can
drastically speed up computations. For example:

« we can search in an unsorted list of n elements in time
v/n — which is much faster than the time n which is
needed on non-quantum computers [5], [6], [12];

e we can factor a large integer in time which does not
exceed a polynomial of the length of this integer —
and thus, we can break most existing cryptographic
codes like widely used RSA codes which are based on
the difficulty of such a factorization on non-quantum
computers [12], [15], [16].

These techniques form the basis of quantum computing; see,
e.g., [12].

VII. THIRD EXAMPLE OF OBJECTIVE “FUZZINESS” —
FRACTIONAL CHARGES OF QUARKS

In the late 19th century and early 20th century, it was
experimentally confirmed that seemingly continuous matter
is actually discrete: it consists of molecules, molecules
consist of atoms, and atoms consist of elementary particles.

A part of this confirmation came from an experimental
discovery that all electric charges are proportional to a single
charge — which was later revealed to be equal to the charge
of an electron.

Based on this proportionality, physicists concluded that
many observed elementary particles ranging from (relatively)
stables particles such as protons and neutrons to numerous
unstable ones — like many mesons and baryons discovered
in super-collides and in cosmic rays — cannot be further
decomposed into “more elementary” objects.

In the 1960s, M. Gell-Mann [2], [4], [14] discovered that
if we allow particles with fractional electronic charge, then
we can describe protons, neutrons, mesons, and baryons as
composed of 3 (now more) even more elementary particles
called quarks. At first, quarks were often viewed as purely
mathematical constructions, but experiments with particle-
particle collisions revealed that, within a proton, there are
three areas (partons) where the reflection seems to be the
largest — in perfect accordance with the fact that in the quark
model, a proton consists of exactly three quarks.

So, what we originally thought of as an integer-valued
variable turned out to be real-valued.

VIII. THERE EXIST OTHER EXAMPLES OF OBJECTIVE
“FUZZINESS”

In physics, there are many other examples when what we
originally thought of as an integer-valued variable turned out
to be real-valued. In this paper, we just described the most
well known ones.

IX. OUR EXPLANATION OF WHY PHYSICAL QUANTITIES
ORIGINALLY THOUGHT TO BE INTEGER-VALUED
TURNED OUT TO BE REAL-VALUED: MAIN IDEA

In philosophical terms, what we are doing is “cognizing”
the world, i.e., understanding how it works and trying to
predict consequences of different actions — so that we will
be able to select an action which is the most beneficial for
us.

Of course, our knowledge is far from complete, there are
many real-world phenomena which we have not cognized
yet — and many philosophers believe that some of these
phenomena are not cognizable at all.

If a phenomenon is not cognizable, there is nothing we can
do about it. What we are interested in is phenomena which
are cognizable. This is what we will base our explanation
on — that in such phenomena, it is reasonable to expect
continuous-valued variables, i.e., to expect that properties
originally thought to be discrete are actually matters of
degree.

X. FIRST EXPLANATION: GOEDEL’S THEOREM VS.
TARSKI’S ALGORITHM

A. Goedel’s theorem: a brief reminder

Our first explanation of “objective fuzziness” is based on
the historically first result in which something was actually
proven to be not cognizable — the well-known 1931 Goedel’s
theorem; see, e.g., [3].

This theorem can be formulated in terms of arithmetic.
Specifically, we have variables which run over natural num-
bers 0, 1, 2, ... A term is anything that can be obtained
from these variables and natural-valued constants by using
addition and multiplication, e.g., 2z -y + 3 - z (subtraction
is also OK).

Elementary formulas are defined as expressions of the type
t=t,t<t,t>t,t<tht>t, and t # ' for some
terms ¢ and t'. Examples are 2-z-y+3-z2=0o0rx < y+ 2.

Finally, a formula is anything which is obtained from
elementary formulas by using logical connectives “and” (&),
“or” (V), “implies” (—), “not” (—), and quantifiers “for all
2” (Vx) and “there exists 2 (3z). Example:

VeVy(lex <y — Jz(y =z +y)).

Many statements about the physical world can be formu-
lated in terms of such formulas. Our objective is therefore
to find out whether a given formula is true or false.

Goedel’s theorem states that no algorithm is possible that
would, given a formula, check whether this formula is true
or false. In other words, if we allow variables with discrete
values, then it is not possible to have an algorithm which
would solve all the problems.



B. Tarksi’s result

In the 1940s, another well-known logician, Alfred Tarski,
raised an interesting question: what if we only allow con-
tinuous variables? In other words, what if we consider the
same formulas as Goedel considered, but we change their
interpretation: now every variable can take arbitrary real
values. It turns out that in this case, it is possible to have an
algorithm that, given a formula, checks whether this formula
is true or false. [17].

C. Conclusion

Thus, in a cognizable situations, we cannot have variables
which only take discrete values — these variables must be
able to take arbitrary real values.

Comment. It is worth mentioning that the original Tarski’s al-
gorithm required an unrealistically large amount of computa-
tion time; however, later, faster, practically useful algorithms
have been invented; see, e.g., [1], [10].

XI. SECOND EXPLANATION: EFFICIENT ALGORITHMS
FOR LINEAR ALGEBRA VS. NP-HARDNESS OF INTEGER
PROGRAMMING

A. Not all algorithms are practical

Our first explanation of continuity (and “fuzziness”) was
that with the discrete variables, we cannot have a deciding
algorithm, but with continuous variables, we can.

The existence of an algorithm is necessary for cognition,
but not sufficient. It is well known that some theoretical al-
gorithms are not practical at all. For example, if an algorithm
requires an exponential number of computational steps 2" on
an input of size n, this means that for inputs of a reasonable
size n ~ 300 — 400, the required computation time exceeds
the lifetime of the Universe.

B. Feasible vs. non-feasible algorithms

There is still no perfect formalization of this difference
between “practical” (feasible) and impractical (non-feasible)
algorithms. Usually:

o algorithms for which the computation time ¢4(x) is
bounded by some polynomial P(n) of the length n =
len(z) of the input (e.g., linear-time, quadratic-time,
etc.) are practically useful, while

« for practically useless algorithms, the computation time
grows with the size of the input much faster than a
polynomial.

In view of this empirical fact, in theoretical computer science,
algorithms are usually considered feasible if their running
time is bounded by a polynomial of n. The class of problems
which can be solved in polynomial time is usually denoted
by P; see, e.g., [13].

C. Notion of NP-hardness

Not all practically useful problems can be solved in
polynomial time. To describe such problems, researchers
have defined several more general classes of problems. One
of the most well known classes is the class NP. By definition,
this class consists of all the problems which can be solved
in non-deterministic polynomial time — meaning that if we
have a guess, we can check, in polynomial time, whether this
guess is a solution to our problem.

Most computer scientists believe that NP#£P, i.e., that some
problems from the class NP cannot be solved in polynomial
time. However, this inequality has not been proven, it is still
an open problem. What is known is that some problems
are NP-hard, i.e., any problem from the class NP can be
reduced to each of these problems in polynomial time.
One of such NP-hard problems is the problem SAT of
propositional satisfiability: given a propositional formula F,
i.e., a formula obtained from Boolean (yes-no) variables
Z1,...,T, by using &, V, and -, check whether there exist
values x1,...,x, which make this formula true.

NP-hardness of SAT means that if NP#P (ie., if at
least one problem from the class NP cannot be solved
in polynomial time), then SAT also cannot be solved in
polynomial time. In other words, SAT is the hardest of the
problems from this class.

It is known that all the problems from the class NP can
be solved in exponential time. Indeed, for a problem of size
n, there are < a” possible guesses, where a is the size of
the corresponding alphabet, so we can simply try all these
guesses one by one.

D. Systems of linear equations

One of the simplest-to-solve numerical problems is the
solution to a system of linear equations

a1 '$1+---+a1n'mn:bl;

a21 - T1+ ...+ Gon - Ty = by;

Am1 L1+ oo+ QG - Ty, = by

In the situation when all the unknowns z; can take arbitrary
real values, there exist efficient algorithms for solving such
systems of equations — even the well-known Gauss elimina-
tion method, while not the fastest, it still feasible.

However, as soon as we restrict ourselves to discrete (e.g.,
integer-valued) variables z;, the solution of such a system
becomes an NP-hard problem [13].

E. Conclusion

So, we end up with the same conclusion: that in a
cognizable situations, we cannot have variables which only
take discrete values — these variables must be able to take
arbitrary real values.



XII. SYMMETRY: ANOTHER FUNDAMENTAL REASON
FOR CONTINUITY (“FUZZINESS”)

A. Case study: benzene

To explain why symmetry leads to continuity, let us start
with a chemical example. In the traditional chemistry, a
molecule is composed from atoms that exchange electrons
with each other. If an atom borrows one electron from
another atom, we say that they have a connection of valence
1, if two electrons, there is a connection of valence 2, etc.

From the analysis of benzene, it has been clear that it
consists of 6 carbon and six hydrogen atoms, i.e., that its
chemical formula is CgHg. However, for a long time, it was
not clear how exactly they are connected to each other. The
solution came in the 19th century to a chemist August Kekule
in a dream. He dreamed of six monkeys that form a circle
in which each monkey holds to the previous monkey’s tail.
According to this solution, the six C atoms form a circle. To
each of these atoms, a H atom is attached. Each C atom has
a 1 valence connection to H, 1 valence connection to one of
its neighbors, and 2 to another neighbor.

The resulting chemical structure is still routinely described
in chemical textbooks — because a benzene loop is a basis
of organic chemistry and life. However, now we understand
that this formula is not fully adequate. Indeed, according to
this formula, the connections between C atoms are of two
different types: of valence | and of valence 2. In reality,
the benzene molecule is completely symmetric, there is no
difference between the strengths of different connections.

It is not possible to have a symmetric configuration is
we require that valencies are integers. To equally split the
remaining valence of 3 (I is taken for H) between the two
neighbors, we need a valence of 3/2. This is not possible in
classical chemistry — but this is possible, in some sense, in
quantum chemistry where, as we have mentioned, we have
a continuum of intermediate states; see, e.g., [2].

B. Fuzzy logic itself is such an example

Fuzzy logic itself can be viewed as an example where
symmetries leads to values intermediate between the original
discrete values.

Indeed, in traditional logic, we have two possible truth
values: 1 (“true”) and O (“false”). How can we use this logic
to describe the absence of knowledge? If we do not know
whether a given statement A is true or not, this means that
we have the exact same degree of belief in the statement A
as we have in its negation —A. In the traditional logic, none
of the two truth values are symmetric (invariant) under such
transformation A — —A. Thus, to adequately describe this
situation, we need to also consider additional (intermediate)
truth values.

And indeed, in fuzzy logic with the set of truth values
[0,1] and the negation operation f_(z) = 1 — x, there s a
value which is invariant under the operation A — —A: the
value 0.5.

XIII. CASE STUDY: TERRITORY DIVISION
A. Formulation of the problem

In many conflict situations, several participants want to
divide a territory between themselves. It may be farmer’s
children dividing his farm, it may be countries dividing a
disputed territory.

B. Traditional (non-fuzzy) formalization of the problem

Let us follow [11] and describe a traditional (non-fuzzy)
formalization of this problem. Let us denote the disputed
territory (i.e., to be more precise, the set of all the points in
this territory) by 7. Our objective is to divide this territory
between n participants, i.e., to select a division of the set T'
into the sets 11,75, ..., T, for which T, N T; =0 for ¢ # j
and

ThuTl,u...uT,=1T.

It is reasonable to assume that the utility u; of the ¢-th
participant in acquiring the territory 75 is linear in T;, i.e.,
has the form

T;
for some appropriate function U;(x). As we mentioned in
[11], it is reasonable to use Nash’s criterion to select the
optimal division, i.e., to select the division for which the

product
def

u = ul(Tl) . UQ(TQ) . un(Tn)
attains the largest possible value. According to [11], in the
optimal solution, for every participants ¢, there is a weight
¢; such that each point z is assigned to the participant with
the largest weighted utility ¢; - U;(x).

In particular, for two participants, there is a threshold
¢ such that all the points = for which Uy (z)/Uz(x) > ¢
go to the first participant, and all the points x for which
Ui(z)/Uz(z) < ¢ go to the second participant.

C. Possibility of a “fuzzy” solution

From the commonsense viewpoint, why do we have to
necessarily divide all the disputed territory? Why cannot we
control some parts of it together? In other words, instead of
dividing the set T into subsets 7;, why cannot we assign,
to every point x € T and to every 4, the degree d;(x) to
which the i-th participant will control the neighborhood of
this point — in such a way that for every point x,

dl(lf> + ...+ dn(l‘) =1

In other words, instead of a crisp partition we have a fuzzy
partition.

In this setting, the utility u; of the i-th participant has the
form

wi(dy) = / Uie) - dilx) de,

and our objective is to find a fuzzy partition for which the
product

ef

w S uy(dy) us(ds) - . un(dy)

attains the largest possible value.



D. Observation: the above “fuzzy” problem always has a
crisp optimal solution

The derivation from [11] was based on the idea that if
we attain a maximum, then a small change of assignment
in the vicinity of each point will only decrease (or not
change) the desired product. For the fuzzy problem, a similar
argument shows that there are weights ¢; such that in the
optimal solution, every point x for which the weighted utility
each point z is assigned to the participant with the largest
weighted utility ¢; - U;(x) of the i-th participant is larger
than the weighted utility of all other participants is assigned
to this ¢-th participant.

The only points about which we cannot make a definite
assignment are the ones in which two or more participants
have exactly the same weighted utility. How we divide these
points between these participants does not matter — as long
as the overall degree of all the points assigned to each of
these participants remains the same. In particular, this means
that it is always possible to have a crisp division with the
optimal value of the desired product.

So, we arrive at a somewhat paradoxical situation: even
when we allow “fuzzy” divisions, the corresponding opti-
mization problem always have a crisp solution. So, at first
glance, it may seem that fuzzy solutions are not needed at
all.

As we will see, the situation changes if we consider
symmetry.

E. Symmetry leads to fuzziness

For the territory division problem, a symmetry means a
transformation f : T — T that preserves the area of each
(crisp) subset and that preserves the utility of each subarea
to each participant. Preserving area means that f has to be a
measure-preserving transformation. Preserving utility means
that we must have U;(z) = U;(f(x)) for all .

It is reasonable to require that if the original situation
allows a symmetry, then the desired division should be
invariant with respect to this symmetry. Let us show that
this requirement leads to a fuzzy solution.

Indeed, let us consider the simplest situation in which we
have only two participants, and both assign equal value to
all the points Uy (z) = Us(z) = 1. In this case, the utility of
each set T; is simply equal to its area A;, so the optimization
problem takes the form

Ay - Ay — max.

Since the sum A; + As is equal to the area A of the original
territory 7', this problem takes the form

A1 (A—Al) — max.

One can easily check that the optimal crisp solution means
that A; = A/2, i.e., that we divide the area T into two equal
halves.

This solution is optimal but it is not symmetric. Indeed, in
this case, symmetries are simply area-preserving transforma-
tions. Symmetry of the division means that f(77) = T for

all such transformations f. However, for every two points
z,y € T, we can have an area-preserving transformation
f that maps z into y: f(z) = y. In particular, we can have
sauch a transformation for x € T and y € T5, in which case
f(Ty) # Ty. Thus, a crisp symmetric solution is impossible.

In contrast, a fuzzy symmetric solution is quite possible —
and uniquely determined: we simply assign to each point x
equal degrees dy(z) = da(x) = 1/2. Then, f(d;) = d; and
f(d2) = do for all area-preserving transformations f.

In general, we always have an optimal symmetric solu-
tion: in this solution, equally desired points — for which
¢ - Ui(xz) = ¢; - Uj(z) — are all assigned a joint control
with the same degree of ownership depending only on a
and j.
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