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1. Physical Induction
Physical induction: main idea. How do we come up with physical laws? Someone formulates
a hypothesis, this hypothesis is tested, and if it confirmed sufficiently many times, then we
conclude that this hypothesis is indeed a universal physical law. This conclusion is known as
physical induction. Different physicists may disagree on how many experiments we need to
become certain, but most physicists would agree that after sufficiently many confirmations, the
hypothesis should be accepted as a physical law.

How to describe physical induction in precise terms. How can formalize physical induction?
Let s denote the state of the world, and let P (s, i) indicate that the property P holds in the
i-th experiment. In these terms, physical induction means that for every property P , there is
an integer N such that if the statements P (s, 1), . . . , P (s,N) are all true, then the property P
holds for all possible experiments – i.e., we have ∀nP (s, n); see, e.g., (Kreinovich, 2012b).

Of course, this cannot be true for all mathematically possible states: it is theoretically possible
that we have observation sequences in which an arbitrarily large number of “true” statements is
followed by a “false” statement. Our understanding of the physicists’ claims is that if we restrict
ourselves to physically meaningful states, then physical induction is true. Thus, we arrive at the
following definition.

Definition 1.1.

• Let S be a set; its elements will be called states of the world.

• Let T ⊆ S be a subset of S. We say that T consists of physically meaningful states if
for every property P , there exists an integer NP such that for each state s ∈ T for which
P (s, i) holds for all i ≤ NP , we have ∀nP (s, n).



Comments.

• To make this definition precise, we need to describe a language in which we can describe
different properties. For this definition, we need to select a theory L which is rich enough to
contain all physicists’ arguments and at the same time weak enough so that we will be able
to formally talk about definability in L; for a detailed discussion, see Appendix (see also
(Finkelstein & Kreinovich, 1987 ; Kreinovich, 2012b, 2009 ; Kreinovich & Finkelstein,
2004, 2006)).

• Instead of properties, we can reformulate this definition in terms of definable sets, i.e., sets
of the type {x : P (x)} corresponding to definable properties P (x).

Definition 1.1′.

• Let S be a set; its elements will be called states of the world.

• Let T ⊆ S be a subset of S. We say that T consists of physically meaningful states if for
every definable sequence of sets {An}, there exists an integer NA such that

T ∩
NA∩
n=1

An = T ∩
∞∩
n=1

An. (1.1)

Existence proof. Do such subsets exist? The existence proof uses the fact that each definable
sequence is described by a property in the corresponding language, and since there are no more
than countably many words in a language, the set of all such properties is also (no more than)
countable. For example, for the set S of real numbers or tuples, and for the case when all
definable sets are measurable, we can enumerate all definable sequence, as {A1

n}, {A2
n}, . . . Let

us pick any number ε ∈ (0, 1). For each k, for the difference sets Dk
n =

n∩
i=1

Ak
n−

∞∩
i=1

Ak
n, we have

Dk
n+1 ⊆ Dk

n and
∞∩
n=1

Dk
n = ∅, thus, µ(Dk

n) → 0. Hence, there exists nk for which µ
(
Dk

nk

)
≤

2−k ·ε. We then take T = S−
∞∪
k=1

Dk
nk

. Here, µ
( ∞∪
k=1

Dk
nk

)
≤

∞∑
k=1

µ
(
Dk

nk

)
≤

∞∑
k=1

2−k ·ε = ε < 1,

and thus, the difference T is non-empty. For this set T , we can take NAk = nk.

From states of the world to specific quantities. In practice, we do not know the state of the
entire world, we have a partial information about this state – e.g., we may know the values of
finitely many quantities describing the current state of the world.

In precise terms, we can describe this by saying that we have a definable function f : S → X
which maps every state of the world into the corresponding partial information – e.g., into the
values of the corresponding quantities. One can prove that the range f(T ) corresponding to all
physically meaningful states has the same property as the original set T :

Proposition 1.1. Let S be a set, let a set T ⊆ S consist of physically meaningful states, and
let f : S → X be a definable function. Then, for every definable sequence of subsets Bn ⊆ X ,

there exists an integer NB such that f(T ) ∩
NB∩
n=1

Bn = f(T ) ∩
∞∩
n=1

Bn.

Proof. We want to prove that for some NB, if an element x ∈ f(T ) belongs to the sets
B1, . . . , BNB

, then x ∈ Bn for all n. An arbitrary element x ∈ f(T ) has the form x = f(s)

for some s ∈ T . Let us take An
def
= f−1(Bn). Since T consists of physically meaningful states,



there exists an appropriate integer NA. Let us take NB
def
= NA. By definition of An, the con-

dition x = f(s) ∈ Bi implies that s ∈ Ai; so we have s ∈ Ai for all i ≤ NA. Thus, we have
s ∈ An for all n, which implies that x = f(s) ∈ Bn. The proposition is proven.

Comment. Because of this proposition, we can view the set X as the set of states of the world.

If we limit ourselves to physically meaningful states, then many generally-undecidable
computational problems become decidable. It is known that many computational problems
are, in general, algorithmically undecidable.

For example, from the physical viewpoint, real numbers x describe values of different quanti-
ties. We get values of real numbers by measurements; measurements are never 100% accurate,
so what we get after each measurement is an approximate value rk of x. In principle, we can
measure x with higher and higher accuracy. Thus, from the computational viewpoint, the in-
formation that we have about a number x is a sequence of rational numbers rk for which, e.g.,
|x − rk| ≤ 2−k. By an algorithm processing real numbers, it is this reasonable to understand
an algorithm which is allowed to send a request k and get the corresponding rational value
rk. In other words, the algorithm can use the sequence rk as an “oracle’ (subroutine). This is
how computations with real numbers are defined in computable analysis; see, e.g., (Pour-El &
Richards, 1989 ; Weihrauch, 2000).

It is known (Pour-El & Richards, 1989 ; Weihrauch, 2000) that equality of real numbers is
undecidable: no algorithm is possible which, given two real numbers x and y, checks whether
x = y. For physically meaningful real numbers, however, a deciding algorithm is possible.

Proposition 1.2. (Kreinovich, 2012a) For every set T ⊆ IR2 which consists of physically
meaningful pairs (x, y) of real numbers, there exists an algorithm which decides whether x = y.

Proof. We can take An = {(x, y) : 0 < |x − y| < 2−n}. Then, there exists an integer NA for
which the property (1.1) holds. In this case, the intersection of all the sets An is empty, thus

(1.1) means that T has no elements from the from the intersection
NA∩
n=1

An – which coincides

with ANA
. Thus, for each pair (x, y) ∈ T , we have either x = y or |x− y| ≥ 2−NA . If we take

2−(NA+3)-approximations x′ and y′ to x and y, then:

• in the case x = y we will get |x′ − y′| ≤ (1/4) · 2−NA , and

• in the case |x− y| ≥ 2−NA , we get |x′ − y′| ≥ (3/4) · 2−NA .

These cases are clearly distinguishable. The proposition is proven.

Another known negative result is that in general, it is not possible, given a function f(x)
which attains negative and positive values, to compute its root (see (Kreinovich, 2012a ; Pour-
El & Richards, 1989 ; Weihrauch, 2000) for exact definitions). This becomes possible if we
restrict ourselves to physically meaningful functions:

Proposition 1.3. Let K be a computable compact, and let X be the set of all functions

f : K → IR

that attains 0 value somewhere on K. Then, for every set T ⊆ X consisting of physically
meaningful functions, there exists an algorithm that, given a function f ∈ T , computes a point
x at which f(x) = 0.



Moreover, we can not only produce a root x, we can actually compute, for any given n,
an 2−n-approximations to the corresponding set of roots {x : f(x) = 0} in the sense of the
Hausdorff distance

dH(A,B)
def
= max

(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

)
,

where d(a,B)
def
= inf

b∈B
d(a, b).

In other words, there exists an algorithm that, given a physically meaningful function f(x)
on a computable compact K that attains a 0 value somewhere on K, computes a root x – and
also computes an 2−n-approximations to the corresponding set of roots.

Proof. To compute the set R def
= {x : f(x) = 0} with accuracy ε > 0, let us take an (ε/2)-net

{x1, . . . , xn} ⊆ K. Such a net exists, by definition of a computable compact set.
For each i, we can compute ε′ ∈ (ε/2, ε) for which Bi

def
= {x : d(x, xi) ≤ ε′} is a computable

compact set; see, e.g., (Bishop, 1967). It is possible to algorithmically compute the maximum
of a function on a computable compact set; thus, we can compute the value

mi
def
= min{|f(x)| : x ∈ Bi}.

Since f ∈ T , similarly to the proof of Proposition 1.2, we can prove that there exists an integer
N for which, for all f ∈ T and for all i, we have either mi = 0 or mi ≥ 2−N . Thus, by
computing each mi with accuracy 2−(N+2), we can check whether mi = 0 or mi > 0.

We claim that dH(R, {xi : mi = 0}) ≤ ε, i.e., that:

• for every point xi for which mi = 0, there exists an ε-close root x, and

• for every root x, there exists an ε-close point xi for which mi = 0.

Indeed, if mi = 0, this means that the minimum of a function |f(x)| on the ε′-ball Bi with a
center in xi is equal to 0. Since the set K is compact, this value 0 is attained, i.e., there exists
a value x ∈ Bi for which f(x) = 0. From x ∈ Bi, we conclude that d(x, xi) ≤ ε′ and, since
ε′ < ε, that d(x, xi) < ε. Thus, xi is ε-close to the root x.

Vice versa, let x be a root, i.e., let f(x) = 0. Since the points xi form an (ε/2)-net, there
exists an index i for which d(x, xi) ≤ ε/2. Since ε/2 < ε′, this means that d(x, xi) ≤ ε′ and
thus, x ∈ Bi. Therefore, mi = min{|f(x)| : x ∈ Bi} = 0. So, the root x is ε-close to a point xi

for which mi = 0. The proposition is proven.

Similar results hold for two other problems which are, in general, not algorithmically solv-
able: locating the maxima (or minima) and finding the fixed points:

Proposition 1.4. Let K be a computable compact, and let X be the set of all functions

f : K → IR.

Then, for every set T ⊆ X consisting of physically meaningful functions, there exists an algo-
rithm that, given a function f ∈ T , computes a point x at which f(x) = max

y
f(y).

Moreover, we can not only produce such a point, we can actually compute, for any
given n, an 2−n-approximations to the corresponding set of global maximum locations{
x : f(x) = max

y
f(y)

}
.



Proof. This problem can be reduced to the previous one if we take into consideration the fact
that maximum max

y
f(y) of a computable function on a computable compact is computable and

that that f(x) = max
y

f(y) if and only if g(x) = 0, where g(x)
def
= f(x)−max

y
f(y).

Proposition 1.5. Let K be a computable compact, and let X be the set of all functions

f : K → K

that have a fixed point x for which f(x) = x. Then, for every set T ⊆ X consisting of physically
meaningful functions, there exists an algorithm that, given a function f ∈ T , computes a point
x at which f(x) = x.

Moreover, we can not only produce such a fixed point, we can actually compute, for any
given n, an 2−n-approximation to the corresponding set of all fixed points {x : f(x) = x}.

Proof. This problem can be reduced to the root finding problem if we take into consideration
that that f(x) = x if and only if g(x) = 0, where g(x)

def
= d(f(x), x).

Relation to randomness and Kolmogorov complexity. Kolmogorov and Martin-Löf proposed
a new definition of a random sequence (Li & Vitányi, 2008), a definition that separates phys-
ically random binary sequences – e.g., sequences that appear in coin flipping experiments or
sequences that appear in quantum measurements – from sequence that follow some pattern. In-
tuitively, if a sequence s is random, it satisfies all the probability laws – like the law of large
numbers, the central limit theorem, etc. Vice versa, if a sequence satisfies all probability laws,
then for all practical purposes we can consider it random. Thus, we can define a sequence to be
random if it satisfies all probability laws.

What is a probability law? In precise terms, it is a statement S which is true with probability
1: P (S) = 1. So, to prove that a sequence is not random, we must show that it does not satisfy
one of these laws.

Equivalently, this statement can be reformulated as follows: a sequence s is not random if
s ∈ C for a (definable) set C (= −S) with P (C) = 0. As a result, we arrive at the follow-
ing definition: We say that a sequence is random if it does not belong to any definable set of
measure 0.

If we use different languages to formalize the notion “definable”, we get different versions
of Kolmogorov-Martin-Löf randomness. In particular, if we define “definable” properties as
computable ones (in some reasonable sense), then randomness can be described in terms of
Kolmogorov complexity K(x) of a string – which is defined as the shortest (bit) length of a
program (in a fixed universal programming language) which generates x. Crudely speaking, an
infinite string s = s1s2 . . . is random if, for some constant C > 0, we have K(s1 . . . sn) ≥ n−C
(see Section 2 for more details).

This definition makes sense – each program uniquely determines its outcome, so to generate
2n different sequences of length n, we need to have 2n different programs – and since for
C ≫ 0, there are only 2n−C ≪ 2n possible binary programs, most sequences require programs
of length K ≥ n − C. A non-trivial part of this definition is that this inequality is sufficient to
guarantee that all other properties are satisfied (Li & Vitányi, 2008).

The above definition means that (definable) events with probability 0 cannot happen. In
practice, physicists also assume that events with a very small probability cannot happen. For
example, they believe that it is not possible that all the molecules in the originally uniform
air move to one side of the room – although, from the viewpoint of statistical physics, the
probability of this event is not zero. This fits very well with a commonsense understanding of



rare events: e.g., if a coin falls head 100 times in a row (or a casino roulette gets to red 100
times in a row), any reasonable person will conclude that this coin is not fair.

It is not possible to formalize this idea by simply setting a threshold p0 > 0 below which
events are not possible – since then, for N for which 2−N < p0, no sequence of N heads
or tails would be possible at all. However, we know that for each decreasing (An ⊇ An+1)
sequence of properties An with lim p(An) = 0 (e.g., An = “we can get first n heads”), there
exists an N above which a truly random sequence cannot belong to AN . In (Finkelstein &
Kreinovich, 1987 ; Kreinovich, 2012a, 2012b, 2009 ; Kreinovich & Finkelstein, 2004, 2006),
we thus propose the following definition of a set of random elements:

Definition 1.2. We say that R is a set of random elements if for every definable decreasing
sequence {An} for which limP (An) = 0, there exists an N for which

R∩ AN = ∅.

Let RK denote the set of the elements random in the usual Kolmogorov-Martin-Löf sense.
Then the following is true (Kreinovich, 2009, 2012a):

Proposition 1.6.

• Every set of random elements consists of physically meaningful elements. elements.

• For every set T consisting of physically meaningful elements, the intersection T ∩RK is a
set of random elements.

Proof. For every definable sequence An, the corresponding difference sets Dn
def
=

n∩
i=1

Ai−
∞∩
i=1

Ai

are decreasing (Dn ⊇ Dn+1) and their intersection is empty. Thus, P (Dn) → 0. Therefore,
there exists an N for which the set of random elements does not contain any elements from DN .
As we have shown in the existence proof, this implies that for this N , the property (1.1) is sat-
isfied. Thus, every set of random elements indeed consists of physically meaningful elements.

Vice versa, let T be a set consisting of physically meaningful elements. Let us prove that

T ∩ RK is a set of random elements. Indeed, if An ⊇ An+1 and P
( ∞∩
n=1

An

)
= 0, then for

Bm
def
= Am −

∞∩
n=1

An, we have Bm ⊇ Bm+1 and
∞∩
n=1

Bn = ∅. Thus, by definition of a set

consisting of physically meaningful elements, we conclude that the property (1.1) holds, i.e., in

our case, that BN ∩ T = ∅. Since P
( ∞∩
n=1

An

)
= 0, we also know that

( ∞∩
n=1

An

)
∩ RK = ∅.

Thus, AN = BN ∪
( ∞∩
n=1

An

)
has no common elements with the intersection T ∩ RK . The

proposition is proven.

2. Alternative Idea: No Physical Theory Is Perfect
No physical theory is perfect: a common physicists’ belief. Physical induction implies that
a physical law is universally valid. However, in the history of physics, no matter how good
a physical theory, no matter how good its accordance with observations, eventually, new ob-
servations appear which are not fully consistent with the original theory – and thus, a theory
needs to be modified. For example, for several centuries, Newtonian physics seems to explain
all observable facts – until later, quantum (and then relativistic) effects were discovered which
required changes in physical theories.



Because of this history, many physicists believe that every physical theory is approximate –
no matter how sophisticated a theory, no matter how accurate its current predictions, inevitably
new observations will surface which would require a modification of this theory; see, e.g.,
(Feynman, Leighton, & Sands, 2005).

How does this belief affect computations? In this section, following (Kosheleva & Soloviev,
1981 ; Zakharevich & Kosheleva, 2014), we show how this idea affects computations.

Towards formalizing the above belief. The statement that no physical theory is perfect means
that no matter what physical theory we have, eventually there will be observations which violate
this theory. To formalize this statement, we need to formalize what are observations and what
is a theory.

Each observation can be represented, in the computer, as a sequence of 0s and 1s; actually, in
many cases, the sensors already produce the signal in the computer-readable form, as a sequence
of 0s and 1s. From this viewpoint, all past and future observations form a (potentially) infinite
sequence ω = ω1ω2 . . . of 0s and 1s, ωi ∈ {0, 1}.

What is a physical theory? A physical theory may be very complex, but all we care about is
which sequences of observations ω are consistent with this theory and which are not. In other
words, for our purposes, we can identify a physical theory T with the set of all sequences ω
which are consistent with this theory.

Of course, not every set of sequences comes from a physical theory. First, a physical theory
must have at least one possible sequence of observations, i.e., the set T must be non-empty.

Second, a theory – and thus, the corresponding set – must be described by a finite sequence
of symbols in an appropriate language. Sets which are uniquely by (finite) formulas are known
as definable. Thus, the set T must be definable.

Another property of a physical theory comes from the fact that at any given moment of
time, we only have finitely many observations, i.e., we only observe finitely many bits. From
this viewpoint, we say that observations ω1 . . . ωn are consistent with the theory T if there is
a continuing infinite sequence which is consistent with this theory, i.e., which belongs to the
set T .

The only way to check whether an infinite sequence ω = ω1ω2 . . . is consistent with the
theory is to check that for every n, the sequences ω1 . . . ωn are consistent with the theory T . In
other words, we require that for some every infinite ω = ω1ω2 . . .,

• if for every n, the sequence ω1 . . . ωn is consistent with the theory T , i.e., if for every n,
there exists a sequence ω(n) ∈ T which has the same first n bits as ω, i.e., for which
ω
(n)
i = ωi for all i = 1, . . . , n,

• then the sequence ω itself should be consistent with the theory, i.e., this infinite sequence
should also belong to the set T .

From the mathematical viewpoint, we can say that the sequences ω(n) converge to ω (limω(n) =
ω), where convergence is understood in terms of the usual metric on the set of all infinite se-
quences d(ω, ω′)

def
= 2−N(ω,ω′), where N(ω, ω′)

def
= max{k : ω1 . . . ωk = ω′

1 . . . ω
′
k}.

In general, if ω(m) → ω in the sense of this metric, this means that for every n, there exists
an integer ℓ such that for every m ≥ ℓ, we have ω

(m)
1 . . . ω(m)

n = ω1 . . . ωn. Thus, if ω(m) ∈ T
for all m, this means that for every n, a finite sequence ω1 . . . ωn can be a part of an infinite
sequence which is consistent with the theory T . In view of the above, this means that ω ∈ T .

In other words, if ω(m) → ω and ω(m) ∈ T for all m, then ω ∈ T . So, the set T must contain
all the limits of all its sequences. In topological terms, this means that the set T must be closed.



The belief that we are trying to formalize is that no matter how many observations we have
which confirm a theory, there eventually will be a new observation which is inconsistent with
this theory. In other words, for every finite sequence ω1 . . . ωn which is consistent with the set
T , there exists a continuation of this sequence which does not belong to T . The opposite would
be if all the sequences which start with ω1 . . . ωn belong to T ; in this case, the set T will be
dense in this set. Thus, in mathematical terms, the statement that every finite sequence which
is consistent with T has a continuation which is not consistent with T means that the set T is
nowhere dense.

Resulting definitions. By combining the above properties of a set T which describes a physical
theory, we arrive at the following definition.

Definition 2.1. By a physical theory, we mean a non-empty closed nowhere dense definable
set T .

In terms of the above notations, the no-perfect-theory principle simply means that the infinite
sequence ω (describing the results of actual observations) is not consistent with any physical
theory, i.e., that the sequence ω does not belong to any physical theory T . Thus, we arrive at
the following definition.

Definition 2.2. We say that an infinite binary sequence ω is consistent with the no-perfect-theory
principle if the sequence ω does not belong to any physical theory (in the sense of Definition 2.1).

Comment. Do such sequences exist at all? Yes, they do. Indeed, by definition, we want a
sequence which does not belong to a union of all definable physical theories. Every physical
theory is closed nowhere dense set. Every definable set is defined by a finite sequence of
symbols, so there are no more than countably many definable theories. Thus, the union of all
definable physical theories is contained in a union of countably many closed nowhere dense
sets. Such sets are knows as meager (or Baire first category); it is known that the set of all
infinite binary sequences is not meager. Thus, there are sequences who do not belong to the
above union – i.e., sequences which are consistent with the no-perfect-theory principle; see,
e.g., (Jalal-Kamali, Nebesky, Durcholz, Kreinovich, & Longpré, 2012 ; Oxtoby, 1980).

How to describe general computations. We want to analyze how the physicists’ belief affects
computations. To be able to perform this analysis, we need to describe what exactly we mean
by computations.

Each computation is a solution to a well-defined problem. As a result, each bit in the re-
sulting answer satisfies a well-defined mathematical property. All mathematical properties can
be described, e.g., in terms of Zermelo-Fraenkel theory ZF, the standard formalization of set
theory. For each resulting bit, we can formulate a property P which is true if and only if this bit
is equal to 1. In this sense, each bit in each computation result can be viewed as the truth value
of some statement formulated in ZF. Thus, our general ability to compute can be described as
the ability to (at least partially) compute the sequence of truth values of all statements from ZF.

All well-defined statements from ZF can be numbered, e.g., in lexicographic order. Let αn

denote the truth value of the n-th ZF statement, and let α = α1 . . . αn . . . denote the infinite
sequence formed by these truth values. In terms of this sequence, our ability to compute is our
ability to compute the sequence α.

Kolmogorov complexity as a way to describe what is easier to compute. We want to ana-
lyze whether the use of physical observations (i.e., of the sequence ω analyzed in the previous
section) can simplify computations. A natural measure of easiness-to-compute was invented



by A. N. Kolmogorov, the founder of modern probability theory, when he realized that in the
traditional probability theory, there is no formal way to distinguish between:

• finite sequences which come from observing from truly random processes, and

• orderly sequences like 0101 . . . 01.

Kolmogorov noticed that an orderly sequence 0101 . . . 01 can be computed by a short program,
while the only way to compute a truly random sequence 0101 . . . is to have a print statement
that prints this sequence. He suggested to describe this differences by introducing what is now
known as Kolmogorov complexity K(x) of a finite sequence x: the shortest length of a program
(in some programming language) which computes the sequence x.

• For an orderly sequence x, the Kolmogorov complexity K(x) is much smaller than the
length len(x) of this sequence: K(x) ≪ len(x).

• For a truly random sequence x, we have K(x) ≈ len(x); see, e.g., (Li & Vitányi, 2008).

The smaller the difference len(x) − K(x), the more we are sure that the sequence x is truly
random.

Relative Kolmogorov complexity as a way to describe when using an auxiliary sequence
simplifies computations. The usual notion of Kolmogorov complexity provides the complexity
of computing x “from scratch”. A similar notion of the relative Kolmogorov complexity K(x | y)
can be used to describe the complexity of computing x when a (potentially infinite) sequence
y is given. This relative complexity is based on programs which are allowed to use y as a
subroutine, i.e., programs which, after generating an integer n, can get the n-th bit yn of the
sequence y by simply calling y. When we compute the length of such programs, we just count
the length of the call, not the length of the auxiliary program which computes yn – just like when
we count the length of a C++ program, we do not count how many steps it takes to compute,
e.g., sin(x), we just count the number of symbols in this function call. The relative Kolmogorov
complexity is then defined as the shortest length of such a y-using program which computes x.

Clearly, if x and y are unrelated, having access to y does not help in computing x, so
K(x | y) ≈ K(x). On the other hand, if x coincides with y, then the relative complexity K(x | y)
is very small: all we need is a simple for-loop, in which we call for each bit yi, i = 1, . . . , n,
and print this bit right away.

Resulting reformulation of our question. In terms of relative Kolmogorov complex-
ity, the question of whether observations enhance computations is translated into checking
whether K(α1 . . . αn |ω) ≈ K(α1 . . . αn) (in which case there is no enhancement) or whether
K(α1 . . . αn |ω) ≪ K(α1 . . . αn) (in which case there is a strong enhancement). The larger the
difference K(α1 . . . αn)−K(α1 . . . αn |ω), the larger the enhancement.

Main result. Let us show that under the no-perfect-theory principle, observations do indeed
enhance computations.

Proposition 2.1. Let α be a sequence of truth values of ZF statements, and let ω be an infinite
binary sequence which is consistent with the no-perfect-theory principle. Then, for every integer
C > 0, there exists an integer n for which K(α1 . . . αn |ω) < K(α1 . . . αn)− C.

Comment. In other words, in principle, we can have an arbitrary large enhancement.

Proof. Let us fix an integer C. To prove the desired property for this C, let us prove that the
set T of all the sequences which do not satisfy this property, i.e., for which K(α1 . . . αn |ω) ≥



K(α1 . . . αn) − C for all n, is a physical theory in the sense of Definition 1. For this, we
need to prove that this set T is non-empty, closed, nowhere dense, and definable. Then, from
Definition 2, it will follow that the sequence ω does not belong to this set and thus, that the
conclusion of Proposition 1 is true.

The set T is clearly non-empty: it contains, e.g., a sequence ω = 00 . . . 0 . . . which does not
affect computations. The set T is also clearly definable: we have just defined it.

Let us prove that the set T is closed. For that, let us assume that ω(m) → ω and ω(m) ∈ T
for all m. We then need to prove that ω ∈ T . Indeed, let us fix n, and let us prove that
K(α1 . . . αn |ω) ≥ K(α1 . . . αn) − C. We will prove this by contradiction. Let us assume
that K(α1 . . . αn |ω) < K(α1 . . . αn) − C. This means that there exists a program p of length
len(p) < K(α1 . . . αn)−C which uses ω to compute α1 . . . αn. This program uses only finitely
many bits of ω; let B be the largest index of these bits. Due to ω(m) → ω, there exists M for
which, for all m ≥ M , the first B bits of ω(m) coincide with the first B bits of the sequence ω.
Thus, the same program p will work exactly the same way – and generate the sequence α1 . . . αn

– if we use ω(m) instead of ω. But since len(p) < K(α1 . . . αn) − C, this would means that
the shortest length K(α1 . . . αn |ω(m)) of all the programs which use ω(m) to compute α1 . . . αn

also satisfies the inequality K(α1 . . . αn |ω(m)) < K(α1 . . . αn)−C. This inequality contradicts
to our assumption that ω(m) ∈ T and thus, that K(α1 . . . αn |ω(m)) ≥ K(α1 . . . αn) − C. The
contradiction proves that the set T is indeed closed.

Let us now prove that the set T is nowhere dense, i.e., that for every finite sequence ω1 . . . ωm,
there exists a continuation ω which does not belong to the set T . Indeed, as such a continuation,
we can simply take a sequence ω = ω1 . . . ωmα1α2 . . . obtained by appending α at the end.
For this new sequence, computing α1 . . . αn is straightforward: we just copy the values αi from
the corresponding places of the new sequence ω. Here, the relative Kolmogorov complexity
K(α1 . . . αn |ω) is very small and is, thus, much smaller than the complexity K(α1 . . . αn)
which – since ZF is not decidable – grows fast with n.

The proposition is proven.
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Appendix A: A Formal Definition of Definable Sets
Definition A.1. Let L be a theory, and let P (x) be a formula from the language of the theory
L, with one free variable x for which the set {x |P (x)} is defined in the theory L. We will then
call the set {x |P (x)} L-definable.

Crudely speaking, a set is L-definable if we can explicitly define it in L. The set of all real
numbers, the set of all solutions of a well-defined equation, every set that we can describe in
mathematical terms: all these sets are L-definable.

This does not mean, however, that every set is L-definable: indeed, every L-definable set is
uniquely determined by formula P (x), i.e., by a text in the language of set theory. There are
only denumerably many words and therefore, there are only denumerably many L-definable
sets. Since, e.g., in a standard model of set theory ZF, there are more than denumerably many
sets of integers, some of them are thus not L-definable.

Our objective is to be able to make mathematical statements about L-definable sets. There-
fore, in addition to the theory L, we must have a stronger theory M in which the class of all
L-definable sets is a set – and it is a countable set.

Denotation. For every formula F from the theory L, we denote its Gödel number by ⌊F ⌋.

Comment. A Gödel number of a formula is an integer that uniquely determines this formula.
For example, we can define a Gödel number by describing what this formula will look like in
a computer. Specifically, we write this formula in LATEX, interpret every LATEX symbol as its
ASCII code (as computers do), add 1 at the beginning of the resulting sequence of 0s and 1s,
and interpret the resulting binary sequence as an integer in binary code.

Definition A.2. We say that a theory M is stronger than L if it contains all formulas, all axioms,
and all deduction rules from L, and also contains a special predicate def(n, x) such that for



every formula P (x) from L with one free variable, the formula

∀y (def(⌊P (x)⌋, y) ↔ P (y))

is provable in M.

The existence of a stronger theory can be easily proven: indeed, for L=ZF, there exists a
stronger theory M. As an example of such a stronger theory, we can simply take the theory
L plus all countably many equivalence formulas as described in Definition A2 (formulas cor-
responding to all possible formulas P (x) with one free variable). This theory clearly contains
L and all the desired equivalence formulas, so all we need to prove is that the resulting theory
M is consistent (provided that L is consistent, of course). Due to compactness principle, it is
sufficient to prove that for an arbitrary finite set of formulas P1(x), . . . , Pm(x), the theory L is
consistent with the above reflection-principle-type formulas corresponding to these properties
P1(x), . . . , Pm(x).

This auxiliary consistency follows from the fact that for such a finite set, we can take

def(n, y) ↔ (n = ⌊P1(x)⌋&P1(y)) ∨ . . . ∨ (n = ⌊Pm(x)⌋&Pm(y)).

This formula is definable in L and satisfies all m equivalence properties. The statement is
proven.

Important comments. In the main text, we will assume that a theory M that is stronger than L
has been fixed; proofs will mean proofs in this selected theory M.

An important feature of a stronger theory M is that the notion of an L-definable set can be
expressed within the theory M: a set S is L-definable if and only if

∃n ∈ IN∀y(def(n, y) ↔ y ∈ S).

In the paper, when we talk about definability, we will mean this property expressed in the
theory M. So, all the statements involving definability become statements from the theory M
itself, not statements from metalanguage.


