
Adding possibilistic knowledge to probabilities
makes many problems algorithmically decidable

Olga Kosheleva and Vladik Kreinovich

University of Texas at El Paso

Abstract

Many physical theories accurately predict which
events are possible and which are not, or – in sit-
uations where probabilistic (e.g., quantum) effects
are important – predict the probabilities of different
possible outcomes. At first glance, it may seem that
this probabilistic information is all we need. We
show, however, that to adequately describe physi-
cists’ reasoning, it is important to also take into
account additional knowledge – about what is pos-
sible and what is not. We show that this knowledge
can be described in terms of possibility theory, and
that the presence of this knowledge makes many
problems algorithmically decidable.
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1. Need to Supplement Probabilistic
Predictions with Possibilistic Information

How physicists make their conclusions: why
probabilities are sometimes not enough.
Modern physics makes many very accurate predic-
tions of different events. In situations when quan-
tum effects are important and thus, deterministic
predictions are not possible, physics predicts prob-
abilities of different events; see, e.g., [5]. There
are still many problems where we cannot accurately
predict the events and/or their probabilities, but in
many other situations, the accuracy of predictions
is truly amazing.

At first glance, once we know the probabilities, we
are done: we can thus predict the frequencies with
which the corresponding events will occur in real
life. In many situations, probabilities are indeed all
we need. For example, when we predict that the
probability of a coin falling heads is 1/2, this means
that in half of the cases, the coin will fall heads, in
half, tails, and there is no other information that we
can extract from observing the results of an actual
coin toss: these results should be random.

This is true not only for coin tossing, but also
for other predictions in which the predicted prob-
ability is “reasonable”, i.e., not too small and not
too close to 1. However, the situation is somewhat
different when it comes to events with a very small
probability. Let us give a few simple examples.

According to statistical physics, entropy of a
closed system can only increase. This means, for ex-
ample, that if we place a cold kettle on a cold stove,
it is not possible that the kettle will start boiling by
itself, while the stove will get colder – although this
transfer of energy from the stove to the kettle does
not contradict to the energy conservation law.

How do physicists conclude that this is not possi-
ble? They estimate the probability of such an event
and conclude that this probability is extremely
small. From the purely mathematical viewpoint,
the fact that this probability is not zero means that
if we wait long enough, then we will still see a ket-
tle boiling on a cold stove. However, this is not
what the physicists claim. What they claim is that
the kettle cannot boil. In other words, they claim
that the corresponding event is simply not possible
[2, 4, 5].

Another example is the impossibility of sponta-
neous human levitation. The fact that a body has
a non-zero temperature means that all the atoms
and all the molecules in the body are randomly os-
cillating. Again, since all the molecules are going in
random directions, there is a non-zero probability
that they will all go into the same direction and a
person will be spontaneously lifted above ground.
What the physicists claim is not that such a pos-
sibility is rare, they claim is that it is simply not
possible.

Physicists make similar conclusions about all irre-
versible events. For example, if we place a gas in one
half of the box and leave another half – separated
by a door – empty, then, when we open the door,
gas will spread evenly through both halves of the
box. From the purely mathematical viewpoint, it is
also possible that, vice versa, if we start with a gas
which is uniformly spread through the box, then at
some future moment of time, all the molecules will
concentrate in one half of this box, while the other
half will remain empty: the probability of this event
is small but still positive. However, what the physi-
cists claim is that such a spontaneous separation is
simply not possible.

Need to go beyond probabilities is in good
accordance with common sense. The impossi-
bility of events with very low probability may sound
counter-intuitive, but it is actually in good accor-
dance with common sense. Suppose that you flip a
coin – which you believe to be fair – several times,
and every time it falls heads. If this happens two,



three, even ten times in a row, you may still con-
tinue believing that the coin is fair and that the
actual probability of heads is indeed 1/2. However,
what if this happens 30 times in a row? 100 times in
a row? Different people may have different thresh-
olds, but for any person, there is some number after
which the person will be absolutely sure that this
coin is not fair.

Let us give another example. In each state lot-
tery, usually, someone wins the big prize. If the
same person wins the big prize two years in a row,
one may still claim that this was a random coin-
cidence. But what if the same person wins three
years in a row? four years in a row? No matter
how much you originally believe in the fairness of
the state lottery process, if this continues year af-
ter year, eventually, every person will be convinced
that the lottery is rigged.

Events with very small probability are not
possible: can we describe this physical idea in
purely probabilistic terms? We have mentioned
that both physics and common sense use a rule that
events with very small probability cannot happen.
How can we describe this rule in precise terms?

At first glance, it may seem that we can describe
this rule in purely probabilistic terms: namely, we
can set up some threshold small value p0 ≪ 1, and
we can claim that any event with probability ≤ p0
is not possible. Alas, the simply example of coin
tossing shows that proposal does not work. Indeed,
what we want to claim is that after tossing a coin
a large number (N) of times, we cannot have a se-
quence HH. . . H of all heads. The probability of this
event is 2−N , which, for large N , is indeed a very
small number. So, at first glance, it may seem that
if we take p0 ≥ 2−N , then we will be able to make
the desired conclusion.

But the situation is not so easy. The problem is
that any sequence of N heads and tails – including
the actual sequence that we will get after tossing a
coin N times – has the exact same probability 2−N .
So, if we require that no event with probability ≤ p0
is possible, we come up with a strange conclusion
that no sequence of heads and tails is possible at all
– which makes no sense, since, of course, we can flip
the coin N times and record the results.

Comment. It is worth mentioning that there is a
direct relation between this discussion and the no-
tions of Algorithmic Information Theory, such as al-
gorithmic randomness and Kolmogorov complexity;
see, e.g., [17]. The main difference, however, is that
the notion of algorithmic randomness is based on
the assumption that events with probability 0 can-
not occur, while we are trying to describe a more
general statement: that not only events with zero
probability cannot occur, but events with a suffi-
ciently small positive probability cannot occur ei-
ther.

Possibilistic information is needed. The above

simple example shows that we cannot separate pos-
sible from impossible events by only using the
known probabilities of different events. Thus, to
properly describe physicists’ reasoning (and our
common sense), we need to supplement the proba-
bilistic information with an additional information
about what is possible.

2. How to Describe the Desired Possibilistic
Information

What is possible: how to describe the opin-
ion of a single expert. Let us start by describing
a single expert’s opinion on what is possible and
what is not. Let U be the university of discourse,
i.e., in our case, the set of possible events. We
assume that we know the probabilities of different
events, i.e., that for some subsets S ⊆ U , we know
the probability p(S) that the actual event will be
in S.

From all possible events, the expert select a sub-
set T of all events which are possible. The main idea
that we want to formalize is that if the probability is
very small, then the corresponding event is not pos-
sible. What constitutes “very small” depends on
the situation, but it is clear that if we have a defin-
able sequence of events A1 ⊇ A2 ⊇ . . . ⊃ An ⊇ . . .,
with p(An) → 0, then for some sufficiently large
N , the probability of the corresponding event AN

becomes so small that this event is impossible, i.e.,
T ∩ AN = ∅.

This is what we trying to describe for the case of
coin tossing: An is the event when the heads appear
in the first n coin tosses; then, p(An) = 2−n → 0.

In general, we arrive at the following formaliza-
tion:
Definition 1. [8] Let U be a set with a probability
measure p. We say that a subset T ⊆ U is a set of
possible elements if for every definable sequence An

for which An ⊇ An+1 and p(An) → 0, there exists
N for which T ∩ AN = ∅.
Need to go beyond probabilities. Sometimes,
physicists use similar arguments even in situations
when we do not know the probabilities. For exam-
ple, physicists often expand a dependence in Tay-
lor series f(x) = a0 + a1 · x + a2 · x2 + . . . When
x is small, i.e., when |x| ≤ δ for some small δ,
they argue that we can safely ignore quadratic (and
higher order) terms in this expansion and assume
that f(x) ≈ a0 + a1 · x; see, e.g., [5].

This conclusion is definitely justified if we know
the value a2, or, at least, if we know some a priori
bound C on this value. Then, |a2 · x2| ≤ C · δ2,
so when δ is sufficiently small, this term can indeed
be safely ignored. However, physicists make this
conclusion even when we do not know of any a priori
bound on a2. Their idea is that values which are too
large are highly improbable.

In this case, we also have a series of events An ⊇
An+1: namely, An is the set of situations in which



|a2| > n. Here, we do not have probabilities, but
we know that ∩An = ∅. Thus, no matter what
is the (unknown) probability measure p, we have
p(An) → 0. As a result, we can use Definition 1
and conclude that for a sufficiently large N , events
from AN are impossible – hence |a2| ≤ N .

Such situations lead to the following alternative
definition that can be even when we do not know
probabilities; see, e.g., [6, 7, 8, 10, 11, 12, 13, 14, 15,
16]:

Definition 2. Let U be a set. We say that a subset
T ⊆ U is a set of possible elements if for every
definable sequence An for which An ⊇ An+1 and
∩An = ∅, there exists N for which T ∩ AN = ∅.

What is known and we plan to prove. It is
known (see, e.g., [12]) that if we restrict ourselves
to possible elements, then some problems become
algorithmically solvable. In this paper, we extend
this result to a general class of problems.

We also show how the above definitions relate to
the usual notions of possibility theory; see, e.g., [3,
22].

From individual experts to groups of experts.
Reasoning in physics does not rely on the opinion
of a single expert: physics is versatile, and it is im-
portant to have several experts to cover all possible
topics. Let E denote the set of all the experts.

Experts, in general, may have somewhat different
ideas on what is possible and what is not. As a
result, instead of a single set T of possible events,
we have several different sets Te corresponding to
different experts e.

How to reformulate this information in terms
of the usual possibility theory. Instead of de-
scribing, for each expert, which events are possible
or not possible according to this expert, it makes
sense to instead describe, for each event s, which ex-
perts consider this possible possible and which not
possible. In this case, to each event s, we put into
correspondence the set m(s) ⊆ E of all the experts
who believe that s is possible.

One can easily show that this description is equiv-
alent to the description in terms of the sets Te. In-
deed:

• if we know all the sets Te, then for each event
s, we can assign the set m(s) = {e : s ∈ Te};

• vice versa, if we know all the values m(s), then,
to each expert e, we can assign the set

Te = {s : e ∈ m(s)}.

In addition to describing which individual events
are possible, it makes sense to describe which sets of
events are possible. For example, we can ask for the
possibility that we have 1 particle, or 2 particles, or
3 particles, and we can also ask for the possibility
that we have at least one particle.

In precise terms, instead of a single event s ∈ U ,
we have a set of events S ⊆ U , and we are interested

in checking when some event from S is possible. Let
m(S) denote the set of all the experts who believe
that one of the events s ∈ S is possible. An expert
believes that some event s ∈ S is possible if and
only if for some s ∈ S, the expert believes that
the corresponding event s is possible. Thus, the
set m(S) is equal to the union of all the sets m(s)
corresponding to different events s ∈ S:

m(S) =
∪
s∈S

m(s).

Thus, for every two sets S and S′, we have

m(S ∪ S′) = m(S) ∪ m(S′).

On the class of all sets, there is a natural (partial)
order ≤: namely, the subset relation S ⊆ S′. In
terms of this relation, every two sets have the least
upper bound (join) S ∨S′ = S ∪S′, and the greatest
lower bound (meet) S∧S′ = S∩S′. The whole class
of sets with these two operations is thus a lattice.
In terms of this lattice operations, we have

m(S ∪ S′) = m(S) ∨ m(S′).

This is exactly how a possibility measure is defined
in possibility theory [3] – except that usually, pos-
sibility measures have values in the interval [0, 1],
while for our formalization, we need lattice-valued
possibility measures.

What are the corresponding α-cuts. Since we
have shown that our description of possibility in
physics can be reformulated in terms of possibility
theory, and possibility theory is closely related to
fuzzy [3, 22], in makes sense to analyze what fuzzy
concepts (see, e.g., [9, 18, 21]) will look like in our
case. One of such notions – actively used in fuzzy
set theory, especially when processing fuzzy data –
is the notion of an α-cut.

For each membership function m(s) and for each
degree α, the α-cut is defined as

mα = {s : m(s) ≥ α}.

In our case, degrees are subsets of the set E of all the
experts, and ≥ means a super set relation. Thus,
m(s) ≥ α means all experts from the set α believe
that the event s is possible.

In terms of the sets Te, this means that

mα =
∩
e∈α

Te.

In particular, for α = {e}, we have mα = Te. Each
set Te is a set of possible elements, and one can
easily conclude, from Definitions 1 and 2, that any
subset of such a set also has this property. Thus,
not only every set Te is a set of possible elements,
but for every α, the corresponding α-cut is a set of
possible elements.

Vice versa, if for every α, every α-cut is a set of
possible element, then, in particular, this is true for



α = {e} for each e ∈ E; thus, in this case, every set
Te is indeed a set of possible elements in the sense
of Definitions 1 or 2.

Thus, we get the following equivalent reformula-
tion of our description of the physicists’ possibilis-
tic knowledge: this knowledge can be described as
a lattice-valued possibility measure for which, for
every α, the corresponding α-cut is a set of possible
elements in the sense of Definition 1 or 2.

3. Main Result: Many Problems Are
Algorithmically Decidable If Restrict
Ourselves to Possible Elements

In general, many problems are not algorith-
mically decidable. In general, many computa-
tional problems are not algorithmically decidable;
see, e.g., [1, 20]. As a simple example, let us con-
sider the problem of deciding whether two given real
numbers are equal or not.

In this problem, the input consists of two real
numbers, and the desired output is “yes” or “no”,
depending on whether these numbers are equal or
not.

To describe this problem in precise terms, we need
to formulate how exactly we present the input to
a computer. In practice, real numbers come from
measurements, and measurements are never abso-
lutely accurate. In principle, we can measure a real
number x with higher and higher accuracy (if not
now, then in the future). For example, for any in-
teger n, we can measure this number with the ac-
curacy of n binary digits, i.e., with the accuracy
of 2−n. As a result of each such measurement, we
get a rational number rn for which |x − rn| ≤ 2−n.
This is exactly the usual definition of a computable
real number: it is a process (maybe algorithmic,
maybe involving measurements) that enables us,
given an integer n, to generate a rational number
rn for which |x − rn| ≤ 2−n [1, 20].

Computing with computable real numbers means
that, in addition to usual computational steps, we
can also generate some n, get the corresponding
value rn, and then use this value is computations.

Some things can be computed this way. For
example, if we know computable real numbers x
and y, then their sum z = x + y is also a com-
putable real number. Indeed, to compute the 2−n-
approximation tn to the sum z, it is sufficient
to take the sum sn = rn+1 + sn+1 of 2−(n+1)-
approximations rn+1 and sn+1 to x and y. Indeed,
from |x−rn+1| ≤ 2−(n+1) and |y −sn+1| ≤ 2−(n+1),
we can then conclude that

|z − sn| = |(x + y) − (xn+1 + yn+1)| =

|(x − xn+1) + (y − sn+1)| ≤

|x − xn+1| + |y − sn+1| ≤

2−(n+1) + 2−(n+1) = 2−n.

However, it is not possible to algorithmically
check whether the two computable numbers x and y
are equal or not. Indeed, if this was possible, then,
e.g., for equal real numbers x = y = 0 for which
rn = sn = 0 for all n, our procedure will return
the answer “yes”. This procedure consists of finitely
many steps, thus it can only ask for finitely many
values rn and sn. Let N be the smallest number
which is larger than all the requests n. Then, we
can keep the same x, but take instead a different
y′ = 2−N ̸= 0 for which s′

1 = . . . = s′
N−1 = 0 (so

our equality-checking procedure will not notice the
difference), but s′

N = s′
N+1 = . . . = 2−N . Since

our procedure cannot notice the difference between
y and y′, it will still produce the same answer – that
yes, the inputs are equal – while in reality, the new
inputs x = 0 and y′ = 2−N ̸= 0 are different.

Similar negative results are known for many other
problems [1, 20].

If we restrict ourselves to possible pairs of
real numbers, then equality becomes decid-
able. Let us show, following [12], that if we restrict
ourselves to possible pairs (x, y), then it is algorith-
mically possible to check whether x = y or x ̸= y.

Indeed, the fact that we consider possible pairs of
real numbers means that on the set U = IR × IR of
all possible pairs of real numbers, we have a subset
T of possible numbers that satisfied Definition 2. In
particular, we can consider the following definable
sequence of sets

An
def= {(x, y) : 0 < |x − y| ≤ 2−n}.

One can easily see that An ⊇ An+1 for all n and
that ∩An = ∅. Thus, by Definition 2, there exists
a natural number N for which T ∩ AN = ∅, i.e.,
for which no element s ∈ T belongs to the set AN .
This, in turn, means that for every pair (x, y) ∈ T ,
either |x − y| = 0 (i.e., x = y) or |x − y| > 2−N .

So, to check whether x = y or not, it is sufficient
to compute both x and y with accuracy 2−(N+2),
i.e., to compute values rN+2 and sN+2 for which
|x − rN+2| ≤ 2−(N+2) and |y − sN+2| ≤ 2−(N+2).
Then:

• if x = y, then, due to triangle inequality, we
have

|rN+1 − sN+2| ≤ |x − rN+2| + |x − sN+2| ≤

2−(N+2) + 2−(N+2) = 2−(N+1);

• on the other hand, if x ̸= y, then from |x−y| >
2−N , we conclude that

|rN+1 − sN+2| ≥

|x − y| − |x − rN+2| − |y − sN+2| >

2−N − (2−(N+2) + 2−(N+2)) =

2−N − 2−(N+1) = 2−(N+1).



Thus, by checking whether |rN+1−sN+2| ≤ 2−(N+1)

or whether |rN+1 −sN+2| > 2−(N+1), we can decide
whether x = y or x ̸= y.

Here, we compare rational numbers, i.e., ratios of
integers, and for rational numbers, we can indeed
algorithmically tell whether one is smaller or the
other one is smaller.

Towards a general description of similar
properties. To generalize the above result, let us
come up with a general description of similar prop-
erties.

Let us start with reformulating the question of
whether x = y in generalizable terms. Specifically,
we would like to describe the corresponding prop-
erty in terms of the observable sequences rn and sn

describing the real numbers x and y.
The equality between real numbers can indeed be

described in these terms. Indeed, if x = y, then, for
every n, we have

|rn−sn| ≤ |rn−x|+|x−sn| ≤ 2−n+2−n = 2−(n−1).

Vice versa, let us assume that we have two com-
putable real numbers x and y for which |rn − sn| ≤
2−(n−1) for all n. In this case, due to |x−rn| ≤ 2−n

and |y − sn| ≤ 2−n, we have

|x − y| ≤ |x − rn| + |rn − sn| + |sn − y| ≤

2−n + 2−(n−1) + 2−n = 2−(n−2).

Since this hold for every n, for n → ∞, we get x = y.
Thus, the equality between computable real num-

bers has the form

∀n (|rn − sn| ≤ 2−(n−1)).

In general, as shown, e.g., in [19, 20], many prop-
erties involving limits, differentiability, etc., can be
described in similar terms, namely as an arithmetic
formula

Qn1 Qn2 . . . Qnk F (r1, . . . , rℓ, n1, . . . , nk), (1)

where:

• each Qni is either a universal quantifier ∀ni or
an existential quantifier ∃ni,

• r1, . . . , rℓ are corresponding sequences, and
• the property F is simply a propositional

(“and”, “or”, and “not”) combination of equal-
ities and inequalities between the explicitly
computable rational-valued expressions.

In the above example of checking whether two
given real numbers are equal:

• we have two sequences ℓ = 2,
• we only have one quantifier k = 1,
• this quantifier is a universal quantifier Q1 = ∀,

and
• the property F has (in these terms) the form

|r1(n1) − r2(n1)| ≤ 2−(n1−1).

Let us show that for all such arithmetic expressions,
the presence of possibilistic information leads to al-
gorithmic decidability.

Main Result. For every arithmetic expression (1),
for every set T of possible tuples r = (r1, . . . , rℓ),
there exists an algorithm that, given a tuple r =
(r1, . . . , rℓ) ∈ T , checks whether the formula (1)
holds or not.

Proof. If the formula (1) had no quantifiers, then
we could simply plug in the corresponding values
into this formula and check whether the correspond-
ing formula holds or not. The problem is with the
quantifiers: while we can easily check whether some
property holds for a specific value ni, it is not possi-
ble to directly check whether this property holds for
all infinitely many natural numbers ni = 0, 1, 2, . . .
The situation would be different if we could have a
bound N on possible values of ni, i.e., if the quanti-
fier had the form ∀ni ≤ N or ∃ni ≤ N : in this case,
we can simply test all possible values ni ≤ N .

Let us show that for tuples from the set T , we can
indeed have such bounds on the variables ni. Let
us start with a bound on n1. For the variable n1,
there are two possible cases: when Q1 is a universal
quantifier and when Q1 is an existential quantifier.
Let us consider these two cases one by one.

In the first case, the formula (1) has the form
∀n1 G(n1), for some expression G(n1) (with one
fewer quantifier). Let us take

An = {r : ∀n1 (n ≤ n1 → G(n1)) & ¬∀n1 G(n1)}.

One can easily check that An ⊇ An+1 and ∩An = ∅.
Thus, there exists a natural number N for which
T ∩ AN = ∅. So, for r ∈ T , if

∀n1 (n1 ≤ N → G(n1)),

we cannot have ¬∀n1 G(n1), so we must have
∀n1 G(n1). Clearly, ∀n1 G(n1) always implies
∀n1 (n1 ≤ N → G(n1)). Thus, for r ∈ T , ∀n1 G(n1)
with an unlimited quantifier is equivalent to a for-
mula ∀n1 (n1 ≤ N → G(n1)) with a bounded quan-
tifier.

In the second case, the formula (1) has the form
∃n1 G(n1), for some expression G (with one fewer
quantifier). Let us take

An = {r : ¬∃n1 (n1 ≤ n & G(n1)) & ∃n1 G(n1)}.

One can easily check that An ⊇ An+1 and ∩An = ∅.
Thus, there exists a natural number N for which
T ∩ AN = ∅. So, for r ∈ T , if

¬∃n1 (n1 ≤ N & G(n1)),

we cannot have ∃n1 G(n1), so we must have
¬∃n1 G(n1). Clearly, ¬∃n1 G(n1) always implies

¬∃n1 (n1 ≤ N & G(n1)).



Thus, for r ∈ T , ¬∃n1 G(n1) is equivalent to

¬∃n1 (n1 ≤ N & G(n1)).

So, by taking negations, we conclude that the origi-
nal formula ∃n1 G(n1) with an unlimited quantifier
is equivalent to a formula

∃n1 (n1 ≤ N & G(n1))

with a bounded quantifier.
Now, we have reduced the original formula with

k quantifiers to a formula in which the first quanti-
fier is bounded. This bounded-quantifier formula is
equivalent to, correspondingly,

G(0) & G(1) & . . . & G(N)

or to
G(0) ∨ G(1) ∨ . . . ∨ G(N),

where the corresponding formulas G(n1) have k − 1
quantifiers. So, if we can find the truth values of
each of these (finitely many) formulas G(n1), we
could be able to check the truth value of the original
formula (1).

For each of these formulas G(n1) with k−1 quan-
tifiers, we can apply the same reduction to reduce
them to formulas with k − 2 quantifiers, etc., until
we get formulas with no quantifiers at all – which
can be therefore directly checked.

This reduction proves that it is indeed algorithmi-
cally possible to check whether a given formula (1)
holds or not for a given tuple r. The main result is
proven.

Acknowledgments

This work was supported in part by the National
Science Foundation grants HRD-0734825 and HRD-
1242122 (Cyber-ShARE Center of Excellence) and
DUE-0926721.

References

[1] E. Bishop, Foundations of Constructive Analy-
sis, McGraw-Hill, New York, 1967.

[2] L. Boltzmann, Bemrkungen ’́uber einige Prob-
leme der mechanischen W’́armtheorie, Wiener
Ber. II, 75:62–100, 1877.

[3] D. Dubois and H. Prade, Possibility Theory: An
Approach to Computerized Processing of Uncer-
tainty, Plenum Press, New York, 1988.

[4] R. P. Feynman, Statistical Mechanics,
W. A. Benjamin, New York, 1972.

[5] R. Feynman, R. Leighton, and M. Sands, The
Feynman Lectures on Physics, Addison Wesley,
Boston, Massachusetts, 2005.

[6] A. M. Finkelstein, O. Kosheleva, V. Kreinovich,
S. A. Starks, and H. T. Nguyen, To properly re-
flect physicists’ reasoning about randomness, we

also need a maxitive (possibility) measure, Pro-
ceedings of the 2005 IEEE International Confer-
ence on Fuzzy Systems FUZZ-IEEE’2005, Reno,
Nevada, May 22–25, 2005, pp. 1044–1049.

[7] A. M. Finkelstein, O. Kosheleva, V. Kreinovich,
S. A. Starks, and H. T. Nguyen, Use of maxitive
(possibility) measures in foundations of physics
and description of randomness: case study, Pro-
ceedings of the 24th International Conference of
the North American Fuzzy Information Process-
ing Society NAFIPS’2005, Ann Arbor, Michi-
gan, June 22–25, 2005, pp. 687–692.

[8] A. M. Finkelstein and V. Kreinovich, Impossi-
bility of hardly possible events: physical conse-
quences, In: Abstracts of the 8th international
congress on logic, methodology and philosophy
of science, Moscow, 5(2):25–27, 1987.

[9] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy
Logic: Theory and Applications, Prentice Hall,
Upper Saddle River, New Jersey, 1995.

[10] V. Kreinovich, Toward formalizing non-
monotonic reasoning in physics: the use of Kol-
mogorov complexity and Algorithmic Informa-
tion Theory to formalize the notions “typically”
and “normally”, In: L. Sheremetov and M. Al-
varado (eds.), Proceedings of the Workshops on
Intelligent Computing WIC’04 associated with
the Mexican International Conference on Arti-
ficial Intelligence MICAI’04, Mexico City, Mex-
ico, April 26–27, 2004, pp. 187–194.

[11] V. Kreinovich, Toward formalizing non-
monotonic reasoning in physics: the use of Kol-
mogorov complexity, Revista Iberoamericana de
Inteligencia Artificial, 41:4–20, 2009.

[12] V. Kreinovich, Negative results of computable
analysis disappear if we restrict ourselves to ran-
dom (or, more generally, typical) inputs, Math-
ematical Structures and Modeling, 25:100–113,
2012.

[13] V. Kreinovich, Towards formalizing non-
monotonic reasoning in physics: logical ap-
proach based on physical induction and its re-
lation to Kolmogorov complexity. In E. Erdem,
J. Lee, Y. Lierler, and D. Pearce (eds.), Correct
Reasoning: Essays on Logic-Based AI in Honor
of Vladimir Lifschitz, Springer Verlag, Lectures
Notes in Computer Science 7265:390–404, 2012.

[14] V. Kreinovich and A. M. Finkelstein, Towards
applying computational complexity to founda-
tions of physics, Notes of Mathematical Sem-
inars of St. Petersburg Department of Steklov
Institute of Mathematics, 316:63–110, 2004.

[15] V. Kreinovich and A. M. Finkelstein, Towards
applying computational complexity to founda-
tions of physics, Journal of Mathematical Sci-
ences, 134:2358–2382, 2006.

[16] V. Kreinovich and O. Kosheleva, Logic of sci-
entific discovery: how physical induction affects
what is computable, Proceedings of the Interna-
tional Interdisciplinary Conference Philosophy,



Mathematics, Linguistics: Aspects of Interac-
tion 2014 PhML’2014, St. Petersburg, Russia,
April 21–25, 2014, pp. 116–127.

[17] M. Li and P. M. B. Vitányi, An Intro-
duction to Kolmogorov Complexity, Springer-
Verlag, Berlin, Heidelberg, New York, 2008.

[18] H. T. Nguyen and E. A. Walker, A First Course
in Fuzzy Logic, Chapman and Hall/CRC, Boca
Raton, Florida, 2006.

[19] H. Rogers, Jr., The Theory of Recursive Func-
tions and Effective Computability, MIT Press,
Cambridge, Massachusetts, 1987.

[20] K. Weihrauch, Computable Analysis, Springer
Verlag, Berlin, 2000.

[21] L. A. Zadeh, Fuzzy sets, Information and Con-
trol, 8:338–353, Elsevier, 1965.

[22] L. Zadeh, Fuzzy sets as a basis for a theory
of possibility, Fuzzy Sets and Systems, 1:3–28,
1978.


