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Abstract—In the usual [0, 1]-based fuzzy logic, the actual
numerical value of a fuzzy degree can be different depending on
a scale, what is important – and scale-independent – is the order
between different values. To make a description of fuzziness more
adequate, it is reasonable to consider interval-valued degrees
instead of numerical ones. Here also, what is most important
is the order between the degrees. If we have only order between
the intervals, can we, based on this order, reconstruct the original
numerical values – i.e., the degenerate intervals? In this paper, we
show that such a reconstruction is indeed possible, moreover, that
it is possible under three different definitions of order between
numerical values.

I. FORMULATION OF THE PROBLEM

Need for probabilities and need for fuzzy degrees. To
describe how frequently different events occur, a natural idea
is to use probabilities – i.e., in effect, frequencies with which
this event has occurred. For example, if under certain weather
conditions, in the past, rain happens in 30% of the cases, we
say that under these conditions, the probability of rain is 30%.

In general, if out of n cases, the event of interest happened
in m of them, we say that the probability of the event is
equal to m/n. Strictly speaking, this frequency is only an
approximation to the actual probability; the larger the sample
size n, the more accurate this approximation. So, if we want a
more accurate estimate for the probability, we need to increase
n, i.e., to consider a larger sample.

In addition to this objective probability, there is also sub-
jective uncertainty: experts are not 100% sure about their
statements. For example, an expert may say that the probability
of rain under certain conditions is small, without providing a
precise numerical description of what this word means.

To process this subjective uncertainty, we need to describe
in computer-understandable terns, i.e., in terms of numbers.
This description is one of the main objectives of fuzzy logic;
see, e.g., [1], [4], [5]. To describe an imprecise (“fuzzy”) word
like “small” in precise terms, we can, e.g., for each possible
value x of the corresponding quantity (in the above example,
for each possible probability value) to estimate, on a given
scale, how certain this expert is that x is small. If the expert

marked his or her degree of certainty as 7 on a scale from 0
to 10, we can then say that the expert’s degree of certainty is
7/10. In general, if an expert marked m on a scale from 0 to
n, we can use the value m/n.

An important difference between probabilities and fuzzy
degrees. In both cases of probabilistic and fuzzy uncertainty,
we have the same formula m/n for estimating the correspond-
ing degree. However, there is a big difference between these
values.

Probabilities are objective. If two people use the same data,
they will get the same probability value.

In contrast, expert opinions are subjective. Based on the
same evidence, and based on the same understanding of what
is more probable and what is less probable, some experts
will be more “optimistic” and mostly use values close to 10
on a scale from 0 to 10, while other experts may be more
“pessimistic” and mostly use values close to 0 on the same
scale. In this case, the values m/n corresponding to one expert
can be transformed into values m′/n corresponding to another
expert by an appropriate non-linear re-scaling.

As a result, in fuzzy logic, the actual numerical value of
a fuzzy degree can be different depending on a scale. What
is important – and scale-independent – is the order between
different values.

Need for interval-valued fuzzy logic. Fuzzy logic deals with
situations in which an expert uses imprecise words like “small”
to describe his or her opinion. The expert uses imprecise words
because he or she is unable to come up with an exact estimate.

On the other hand, the traditional [0, 1]-based fuzzy logic
requires the same expert to come up with an exact value of
a scale from 0 to 10 that describes this expert’s degree of
certainty. Of course, in practice, the expert is often unable to
do it. To be more precise, the expect may be able to confidently
say that his.her degree of certainty is 7 and not 6 and not 8,
but if we try to get a more accurate description by taking a
scale form, say, 1 to 100, it is doubtful that the expert will
be able to mark his/her degree of confidence as 71 and not



70 or 72. At best, the expert would be able to mark a whole
interval of possible values – e.g., from 65 to 75 – as describing
his/her degree of certainty. This corresponds to the interval
[0.65, 0.75] of possible degree.

Such interval-valued fuzzy techniques have indeed been pro-
posed. They are indeed more adequate in describing expert’s
uncertainty, and they have led to many practical applications;
see, e.g., [2], [3].

Interval values generalize the usual fuzzy logic: each degree
a ∈ [0, 1] from the original fuzzy logic can also be viewed
as a “degenerate” interval [a, a] in the interval-valued fuzzy
scheme – but, of course, in interval-valued approach, we have
additional degrees [a, b] with a < b.

Formulation of the problem. In the interval-valued case, also
re-scalings are possible. As a result, what is most important is
the numerical values, but rather the order between the degrees.

If we have only order between the intervals, can we, based
on this order, reconstruct the original numerical values – i.e.,
the degenerate intervals?

What we do in this paper. In this paper, we show that such a
reconstruction is indeed possible, moreover, that it is possible
under three different definitions of order between numerical
values.

II. FIRST ORDERING: LATTICE (COMPONENT-WISE)
ORDER

Component-wise order between intervals: a brief reminder.
If for some statement, the expert’s degree of confidence is
represented by an interval [a, b], and then we increase the
lower bound, to make the interval [a′, b] with a′ > a, we thus
increase our degree of confidence in this statement. Similarly,
if we increase b to b′ > b, we thus increase our degree of
confidence. From this viewpoint, it makes sense to say that
the interval [a′, b′] represents a larger )or same) degree of
confidence than the interval [a, b] if a′ ≥ a and b′ > b:

[a, b] ≤ [a′, b′] ⇔ (a ≤ a′ & b ≤ b′).

Formulation of the problem in precise terms. Suppose that
on the set of all subintervals [a, b] of the interval [0, 1], we
have the above ordering.

Based on this ordering, can we uniquely determine degen-
erate intervals, i.e., intervals of the type [a, a]? In this section,
we will answer that this is indeed possible. This determination
will be done step by step.

First step: it is possible to define the interval [0, 0] based
only on the order. Indeed, [0, 0] is the only interval which is
smaller (in the sense of the above relation ≤) than any other
interval.

In precise terms, the interval [0, 0] is the only interval I that
satisfies the property

∀J (I ≤ J),

where variables I and J go over intervals.

Second step: it is possible to defined intervals of the type
[0, a] based only on the order. Our claim is that an interval
I is of type [0, a] if and only if the set of all intervals between
[0, 0] and I is linearly ordered, i.e., if and only if

∀J ∀J ′ (([0, 0] ≤ J ≤ I & [0, 0] ≤ J ′ ≤ I) ⇒
(J ≤ J ′ ∨ J ′ ≤ J)).

Indeed, if I = [0, a], then for each interval J = [b, c], the
condition

[0, 0] ≤ J = [b, c] ≤ [0, a]

implies that 0 ≤ b ≤ 0 and thus, that b = 0. So, all such
intermediate intervals J and J ′ have the form [0, c] for some
real value c.

Of course, all such intervals are linearly ordered. Indeed,
for J = [0, c] and J ′ = [0, c′], either c ≤ c′ or c′ ≤ c.

• In the first case, we have J ≤ J ′.
• In the second case, we have J ′ ≤ J .
Let us show that, vice versa, if the interval I has the form

[a, b] with a ̸= 0 (i.e., a > 0), then there exist J and J ′

between [0, 0] and I for which J ̸≤ J ′ and J ′ ̸≤ J . Indeed, it
is sufficient to take J = [a, 0] and J ′ = [0, b].

Final step: it is possible to define degenerate intervals
based only on the order. We already know how to define
a degenerate interval [0, 0].

Our claim is that I is a degenerate interval [a, a], with a > 0
if and only if I is not of the type [0, a] and there exists an
interval I ′ of the type [0, a] for which

• I ′ ≤ I ,
• the set of all intervals J between I ′ and I is linearly

ordered, and
• for no larger interval I ′′ ≥ I , I ′′ ̸= I , the set of all

intervals J between I ′ and I ′′ is linearly ordered.
Indeed, if I = [a, a] for some a > 0, then we can take

I ′ = [0, a] for this same a. Then all intervals J and J ′ between
I ′ and I have the form [b, a] for some b and the same a and
are, thus, linearly ordered.

On the other hand, if I ′′ = [a′′, b′′] is larger than I = [a, a],
this means that either a′′ > a – in which case b′′ ≥ a′′ > a and
thus b′′ > a – or b′′ > a. Then, both J = I and J ′ = [0, b′′]
are between I ′ and I ′′, but J ̸≤ J ′ and J ′ ̸≤ J .

Vice versa, let us assume that I is a non-degenerate interval
[a0, b0] for some a0 < b0. the fact that this is not an interval
of type [0, a] means that a0 > 0. In this case, linear ordering
for all intervals J and J ′ between I ′ = [0, a] and I = [a0, b0]
is only possible if b0 = a. Indeed, if b0 = a, then we do get
the linear ordering, but if b0 > a, then the intervals J = [0, b0]
and J ′ = [a0, a] are between I ′ and I , but J ̸≤ J ′ and J ′ ≤ J .

So, if there is a linear ordering of all intervals between I ′

and I , then b0 = a, and the interval I has the form [a0, a],
with a0 < a. However, now we can take a larger interval
I ′′ = [a, a] ≥ I , and still be able to conclude that all intervals
between I ′ and I ′′ are linearly ordered – which contradicts to
our requirement that no such larger interval is possible.

Thus, the above condition indeed uniquely determines de-
generate intervals.



III. SECOND ORDERING: NECESSARILY LARGER

Description of the “necessarily larger” ordering. The fact
that for a statement S, instead of a single fuzzy value we have
an interval [a, b] of possible fuzzy values can be interpreted as
saying that the actual (unknown) expert’s degree of confidence
in this statement can be any value between a and b.

Similarly, for another statement S′, the corresponding inter-
val [a′, b′] means that the actual (unknown) expert’s degree of
confidence in the statement S′ can be any value between a′

and b′.
A reasonable idea is to ask when we can be absolutely

certain that our degree of belief in S is smaller than or equal
to the degree of belief in S′. Since we only know that the
intervals that contain the actual values, the only way to be
absolutely certain is to make sure that each value from the
interval [a, b] is smaller than or equal to any value from the
interval [a′, b′].

This means, in particular, that b ≤ a′, Vice versa, if b ≤ a′,
then any value from the interval [a, b] is smaller than or equal
to b and is, thus, smaller than or equal to a′. In its turn, a′

is smaller than or equal to any value from the interval [a′, b′].
Thus, indeed, if b ≤ a′, then any value from the interval [a, b]
is smaller than or equal to any value from the interval [a′, b′],
So, the “necessarily larger” relation takes the following form:

[a, b] ≤ [a′, b′] ⇔ b ≤ a′.

Formulation of the problem in precise terms. Suppose that
on the set of all subintervals [a, b] of the interval [0, 1], we
have the above ordering.

Based on this ordering, can we uniquely determine degen-
erate intervals, i.e., intervals of the type [a, a]? In this section,
we will answer that this is indeed possible. This determination
will be also done step by step.

First step: it is possible to describe interval inclusion based
only on the order. Let us first show that the notion of interval
inclusion [a, b] ⊆ [a′, b′] can be described based only on the
above-defined order. Namely, we will show that

I ⊆ I ′ ⇔

∀I ′′ ((I ′ ≤ I ′′ ⇒ I ≤ I ′′)& (I ′′ ≤ I ′ ⇒ I ′′ ≤ I)).

Indeed, let us assume that I ⊆ I ′. For every interval I ′′, the
relation I ′ ≤ I ′′ means that every element from the interval
I ′ is smaller than or equal to every element from the interval
I ′′. Since I ⊆ I ′, every element of I is also an element of
I ′ and is, thus, smaller than or equal to every element of I ′′.
This means that I ≤ I ′′.

Similarly, for every interval I ′′, the relation I ′′ ≤ I ′ means
that every element from the interval I ′′ is smaller than or
equal to every element from the interval I ′. Since I ⊆ I ′,
every element of I is also an element of I ′ and is, thus, larger
than or equal to every element of I ′′. This means that I ′′ ≤ I .

Vice versa, let us assume that for I = [a, b] and I ′ = [a′, b′],
we have

∀I ′′ ((I ′ ≤ I ′′ ⇒ I ≤ I ′′)& (I ′′ ≤ I ′ ⇒ I ′′ ≤ I)).

In particular, for I ′′ = [b′, b′], we have I ′ ≤ I ′′ and thus, we
have I ≤ I ′′, i.e., [a, b] ≤ [b′, b′]. According to our description
of the “necessarily larger” relation, this means that b ≤ b′.

Similarly, for I ′′ = [a′, a′], we have I ′′ ≤ I ′ and thus, we
have I ′′ ≤ I , i.e., [a′, a′] ≤ [a, b]. According to our description
of the “necessarily larger” relation, this means that a′ ≤ a.

So, a′ ≤ a ≤ b ≤ b′, which means exactly that [a, b] ⊆
[a′, b′].

Final step: it is possible to define degenerate intervals
based only on the order. We already know how to define
inclusion in terms of the order.

A degenerate interval I can then be defined as the one that
does not have any subinterval different from itself:

∀J(J ⊆ I ⇒ J = I).

IV. THIRD ORDERING: POSSIBLY LARGER

Description of the “possibly larger” ordering. Another
reasonable idea is to ask when it is possible that our degree
of belief in S is smaller than or equal to the degree of belief
in S′. Since we only know that the intervals that contain the
actual values, this means that there exists a value from the
interval [a, b] which is smaller than or equal to some value
from the interval [a′, b′].

If v ≤ v′ for some v and v′ for which a ≤ v ≤ b and
a′ ≤ v′ ≤ b′, then from a ≤ v ≤ v′ ≤ b′, we conclude that
a ≤ b′.

Vice versa, if a ≤ b′, then we have values a ∈ [a, b] and b′ ∈
[a′, b′] for which a ≤ b′ and thus, [a, b] is possibly smaller than
[a′, b′]. So, the “possibly larger” relation takes the following
form:

[a, b] ≤ [a′, b′] ⇔ a ≤ b′.

Formulation of the problem in precise terms. Suppose that
on the set of all subintervals [a, b] of the interval [0, 1], we
have the above ordering.

Based on this ordering, can we uniquely determine degen-
erate intervals, i.e., intervals of the type [a, a]? In this section,
we will answer that this is indeed possible. This determination
– similarly to the two previous cases – will be done step by
step.

First step: it is possible to describe interval inclusion based
only on the order. Let us first show that the notion of interval
inclusion [a, b] ⊆ [a′, b′] can be described based only on the
above-defined order. Namely, we will show that

I ⊆ I ′ ⇔

∀I ′′ ((I ≤ I ′′ ⇒ I ′ ≤ I ′′)& (I ′′ ≤ I ⇒ I ′′ ≤ I ′)).

Indeed, let us assume that I ⊆ I ′. For every interval I ′′, the
relation I ≤ I ′′ means that some element from the interval



I is smaller than or equal to some element from the interval
I ′′. Since I ⊆ I ′, every element of I is also an element of I ′.
Thus, some element of I ′ is smaller than or equal than some
element of I ′′. This means that I ′ ≤ I ′′.

Similarly, for every interval I ′′, the relation I ′′ ≤ I means
that some element from the interval I ′′ is smaller than or equal
to some element from the interval I . Since I ⊆ I ′, every
element of I is also an element of I ′. Thus, some element
of I ′′ is smaller than or equal than some element of I ′. This
means that I ′′ ≤ I ′.

Vice versa, let us assume that for I = [a, b] and I ′ = [a′, b′],
we have

∀I ′′ ((I ≤ I ′′ ⇒ I ′ ≤ I ′′)& (I ′′ ≤ I ⇒ I ′′ ≤ I ′)).

In particular, for I ′′ = [a, a], we have I ≤ I ′′ and thus,
we have I ′ ≤ I ′′, i.e., [a′, b′] ≤ [a, a]. According to our
description of the “possibly larger” relation, this means that
a′ ≤ a.

Similarly, for I ′′ = [b, b], we have I ′′ ≤ I and thus, we have
I ′′ ≤ I ′, i.e., [b, b] ≤ [a′, b′]. According to our description of
the “possibly larger” relation, this means that b ≤ b′.

So, a′ ≤ a ≤ b ≤ b′, which means exactly that [a, b] ⊆
[a′, b′].

Final step: it is possible to define degenerate intervals
based only on the order. We already know how to define
inclusion in terms of the order.

Then, similarly to the case of “necessarily larger” relation,
we can define a degenerate interval I as the one that does not
have any subinterval different from itself:

∀J(J ⊆ I ⇒ J = I).
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