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Abstract. We show that in many application areas including soft con-
straints reasonable requirements of scale-invariance lead to polynomial
(tensor-based) formulas for combining degrees (of certainty, of prefer-
ence, etc.)

Partial orders naturally appear in many application areas. One of the main
objectives of science and engineering is to help people select decisions which are
the most beneficial to them. To make these decisions,

– we must know people’s preferences,
– we must have the information about different events – possible consequences

of different decisions, and
– since information is never absolutely accurate and precise, we must also have

information about the degree of certainty.

All these types of information naturally lead to partial orders:

– For preferences, a < b means that b is preferable to a. This relation is used
in decision theory; see, e.g., [1].

– For events, a < b means that a can influence b. This causality relation is
used in space-time physics.

– For uncertain statements, a < b means that a is less certain than b. This
relation is used in logics describing uncertainty such as fuzzy logic (see,
e.g., [3]) and in soft constraints.

Numerical characteristics related to partial orders. While an order may be a nat-
ural way of describing a relation, orders are difficult to process, since most data
processing algorithms process numbers. Because of this, in all three application
areas, numerical characteristics have appeared that describe the corresponding
orders:

– in decision making, utility describes preferences:

a < b if and only if u(a) < u(b);

– in space-time physics, metric (and time coordinates) describes causality re-
lation;

– in logic and soft constraints, numbers from the interval [0, 1] are used to
describe degrees of certainty; see, e.g., [3].



Need to combine numerical characteristics, and the emergence of polynomial
aggregation formulas.

– In decision making, we need to combine utilities u1, . . . , un of different
participants. Nobelist Josh Nash showed that reasonable conditions lead to
u = u1 · . . . · un; see, e.g., [1, 2].

– In space-time geometry, we need to combine coordinates xi into a metric;
reasonable conditions lead to polynomial metrics such as Minkowski metric
in which

s2 = c2 · (x0 − x′0)
2 − (x0 − x′0)

2 − (x1 − x′1)
2 − (x2 − x′2)

2 − (x3 − x′3)
2

and of a more general Riemann metric where ds2 =
∑
i,j

gij · dxi · dxj .

– In fuzzy logic and soft constraints, we must combine degrees of certainty di

in Ai into a degree d for A1 & A2; reasonable conditions lead to polynomial
functions like d = d1 · d2.

In mathematical terms, polynomial formulas are tensor-related. In mathematical
terms, a general polynomial dependence

f(x1, . . . , xn) = f0+
n∑

i=1

fi ·xi+
n∑

i=1

n∑

j=1

fij ·xi ·xj +
n∑

i=1

n∑

j=1

n∑

k=1

fijk ·xi ·xj ·xk + . . .

means that to describe this dependence, we need a finite collection of tensors f0,
fi, fij , fijk, . . . , of different arity.

Towards a general justification of polynomial (tensor) formulas. The fact that
similar polynomials appear in different application areas indicates that there
is a common reason behind them. In this paper, we provide such a general
justification.

We want to find a finite-parametric class F of analytical functions
f(x1, . . . , xn) approximating the actual complex aggregation. It is reasonable to
require that this class F be invariant with respect to addition and multiplication
by a constant, i.e., that it is a (finite-dimensional) linear space of functions.

The invariance with respect to multiplication by a constant corresponds to
the fact that the aggregated quantity is usually defined only modulo the choice
of a measuring unit. If we replace the original measuring unit by a one which
is λ times smaller, then all the numerical values get multiplied by this factor λ:
f(x1, . . . , xn) is replaced with λ · f(x1, . . . , xn).

Similarly, in all three areas, the numerical values xi are defined modulo the
choice of a measuring unit. If we replace the original measuring unit by a one
which is λ times smaller, then all the numerical values get multiplied by this
factor λ: xi is replaced with λ · xi. It is therefore reasonable to also require that
the finite-dimensional linear space F be invariant with respect to such re-scalings,
i.e., if f(x1, . . . , xn) ∈ F , then for every λ > 0, the function

fλ(x1, . . . , xn) def= f(λ · x1, . . . , λ · xn)



also belongs to the family F .
Under this requirement, we prove that all elements of F are polynomials.

Definition 1. Let n be an arbitrary integer. We say that a finite-dimensional
linear space F of analytical functions of n variables is scale-invariant if for every
f ∈ F and for every λ > 0, the function

fλ(x1, . . . , xn) def= f(λ · x1, . . . , λ · xn)

also belongs to the family F .

Main result. For every scale-invariant finite-dimensional linear space F of
analytical functions, every element f ∈ F is a polynomial.

Proof. Let F be a scale-invariant finite-dimensional linear space F of analytical
functions, and let f(x1, . . . , xn) be a function from this family F .

By definition, an analytical function f(x1, . . . , xn) is an infinite series con-
sisting of monomials m(x1, . . . , xn) of the type

ai1...in · xi1
1 · . . . · xin

n .

For each such term, by its total order, we will understand the sum i1 + . . . + in.
The meaning of this total order is simple: if we multiply each input of this
monomial by λ, then the value of the monomial is multiplied by λk:

m(λ · x1, . . . λ · xn) = ai1...in · (λ · x1)i1 · . . . · (λ · xn)in =

λi1+...+in · ai1...in · xi1
1 · . . . · xin

n = λk ·m(x1, . . . , xn).

For each order k, there are finitely many possible combinations of integers
i1, . . . , in for which i1+. . .+in = k, so there are finitely many possible monomials
of this order. Let Pk(x1, . . . , xn) denote the sum of all the monomials of order k
from the series describing the function f(x1, . . . , xn). Then, we have

f(x1, . . . , xn) = P0 + P1(x1, . . . , xn) + P2(x1, x2, . . . , xn) + . . .

Some of these terms may be zeros – if the original expansion has no mono-
mials of the corresponding order. Let k0 be the first index for which the term
Pk0(x1, . . . , xn) is not identically 0. Then,

f(x1, . . . , xn) = Pk0(x1, . . . , xn) + Pk0+1(x1, x2, . . . , xn) + . . .

Since the family F is scale-invariant, it also contains the function

fλ(x1, . . . , xn) = f(λ · x1, . . . , λ · xn).

At this re-scaling, each term Pk is multiplied by λk; thus, we get

fλ(x1, . . . , xn) = λk0 · Pk0(x1, . . . , xn) + λk0+1 · Pk0+1(x1, x2, . . . , xn) + . . .



Since F is a linear space, it also contains a function

λ−k0 · fλ(x1, . . . , xn) = Pk0(x1, . . . , xn) + λ · Pk0+1(x1, x2, . . . , xn) + . . .

Since F is finite-dimensional, it is closed under turning to a limit. In the limit
λ → 0, we conclude that the term Pk0(x1, . . . , xn) also belongs to the family F .

Since F is a linear space, this means that the difference

f(x1, . . . , xn)− Pk0(x1, . . . , xn) =

Pk0+1(x1, x2, . . . , xn) + Pk0+2(x1, x2, . . . , xn) + . . .

also belongs to F . If we denote, by k1, the first index k1 > k0 for which the
term Pk1(x1, . . . , xn) is not identically 0, then we can similarly conclude that
this term Pk1(x1, . . . , xn) also belongs to the family F , etc.

We can therefore conclude that for every index k for which term
Pk(x1, . . . , xn) is not identically 0, this term Pk(x1, . . . , xn) also belongs to the
family F .

Monomials of different total order are linearly independent. Thus, if there
were infinitely many non-zero terms Pk in the expansion of the function
f(x1, . . . , xn), we would have infinitely many linearly independent function in
the family F – which contradicts to our assumption that the family F is a
finite-dimensional linear space.

So, in the expansion of the function f(x1, . . . , xn), there are only finitely
many non-zero terms. Hence, the function f(x1, . . . , xn) is a sum of finitely
many monomials – i.e., a polynomial.

The statement is proven.
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