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Abstract – OCL is a formal notation to specify constraints 
on UML models that cannot otherwise be expressed by 
diagrammatic notations such as class diagrams. Using 
OCL one can document detailed design decisions and 
choices along with the behavior, e.g., class invariants and 
method pre and postconditions. However, OCL constraints 
cannot be directly executed and checked at runtime by an 
implementation, thus constraint violations may not be 
detected or noticed, causing many potential development 
and maintenance problems. In this paper we propose an 
approach to checking OCL constraints at runtime by 
translating them to executable JML assertions. The key 
components of our approach are a set of JML library 
classes, use of model variables, and a separation of JML 
assertions from source code. The library classes implement 
OCL collection types and facilitate a direct mapping from 
OCL constraints to JML assertions by using model 
variables. The translated JML assertions are stored in 
specification files, separate from source code files, to ease 
change management of OCL constraints and Java source 
code. Our approach also facilitates a seamless transition 
from OCL-based designs to Java implementations. 
 

Keywords: class invariant, pre and postconditions, 
assertion, runtime assertion checking, object-oriented class 
library, OCL, JML 

 

1 Introduction 
 A UML diagram such as a class diagram cannot express 

a rich semantics of an application being modeled [1]. There 
is a need for describing additional constraints on the objects 
and entities present in the model. The Object Constraint 
Language (OCL) is a textual, formal specification language 
for specifying the semantics of UML models [13]; OCL 
specifications are commonly referred to as constraints. 
Using OCL, for example, one can specify the behavior of a 
class by writing, among other things, class invariants and 
method pre and postconditions. 

As a design notation, however, OCL is not executable, 
and OCL constraints are not reified to implementation 
artifacts. This may lead to many problems in development 

and maintenance, such as inconsistency. For example, as 
design constraints are not explicitly expressed in source 
code, a change to source code that causes a drift or 
deviation from the initial design may not be detected or 
noticed by the developer. 

In this paper we advocate runtime assertion checking as a 
partial solution to the problem of design drift. We propose 
to reify OCL constraints to source code in a form that can 
be executed and checked at run-time. Specifically we 
translate OCL constraints to executable assertions written 
in JML. JML is a formal behavioral interface specification 
language for Java [9], and a significant subset of it can be 
checked at runtime [1] [4] (see Section 2.2). Assertions 
translated from OCL constraints can detect violations of 
design constraints, thus design drifts at run-time. They also 
provide excellent API documents that are precise and kept 
synchronized with the implementation. In addition, as 
evidenced by a recent introduction of the assert statement 
to the Java language, assertions are recognized as a 
practical programming tool and are said to be most 
effective when they are generated from formal 
specifications such as OCL constraints. 

For the translation we use a set of immutable library 
classes that implement the collection types defined in the 
OCL standard library [13]. The use of library classes makes 
the translation intuitive and traceable, as most OCL 
constraints are directly mapped to the corresponding JML 
assertions. We also expect the use of library classes 
facilitate automation of the translation. Another feature of 
our approach is the way we organize translated assertions.  
Instead of embedding them directly to source code, we 
store them in separate specification files; the JML compiler 
does an appropriate weaving by combining the JML 
specification files with Java source code files [4]. This 
organization facilitates change management of both OCL 
constraints and Java source code; e.g., changes to OCL 
constraints can be automatically propagated to JML 
assertions by retranslating or regenerating the JML 
specification files, and thus having a minimal impact on the 
implementation, i.e., Java source code. Our approach is 
facilitated by several language and tool features of JML, in 
particular, specification-only variables called model 
variables [5] and specification refinement (see Section 4). 
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There is a few previous work done on runtime assurance 
of OCL constraints by translating them to programming 
languages [1] [14].  As in our approach, the common theme 
here was to define a set of OCL library classes for the 
translation. However, OCL constraints are typically 
translated into source code, i.e., a sequence of program 
statements, not into assertions or annotations; therefore, 
they cannot be used as source code-level documents, e.g., 
precise API specifications.  

An assertion is a predicate placed in a program to 
indicate the truth of the assertion at that place [8] [12]. It is 
used to specify and reason about the correctness of a 
program both statically, as in Hoare-style pre and post-
conditions [8], and dynamically, as in Design by Contract 
[11] and assert macros or statements [12]. Surprisingly, 
however, there is not much work done for translating OCL 
to executable (JML) assertions. One exception is the work 
of Hamie, which inspired our own work. Hamie suggested 
translating OCL constraints to JML assertions by defining a 
mapping for OCL operators [7]. The operators of OCL 
collections types are mapped directly or indirectly to the 
methods of JML’s collection model types that implement 
various kinds of container abstractions, such as sets, bags, 
and sequences. However, the organization, structures, and 
vocabulary of JML collection types are somewhat different 
from those of OCL, and it is unclear how this mapping is to 
be reified into implementation artifacts, e.g., JML 
assertions directly referring to program variables. The use 
of both model variables and immutable collection classes 
proposed in our approach will greatly simplify the 
implementation of the mapping and also result in a clear 
and intuitive mapping. For the development of an 
automated translation tool, we plan to adapt and refine his 
mapping. 

The remainder of this paper is organized as follows. In 
Section 2 we briefly review OCL and JML through a small 
example that we will use throughout this paper. In Section 
3 we explain the problem of translating OCL constraints to 
assertions by referring to program states or variables. In 
Section 4 we describe our approach by applying it to our 
running example. We also discuss how our approach solves 
the problems described in Section 3. In Section 5 we 
mention our on-going evaluation effort, which is followed 
by a concluding remark in Section 6. 

 
2 Background 
2.1 OCL 

The Object Constraint Language (OCL) [13] is a text-
based, formal specification language extension to UML for 
specifying constraints or behaviors of UML models that 
cannot otherwise be expressed by diagrammatic notation. It 
supplements UML by providing concise and precise 
expressions that have neither the ambiguities of natural 
language nor the inherent difficulty of using complex 
mathematics. As an example, consider the class diagram 

shown in Figure 1 that depicts different types of banking 
transactions along with associated accounts. 

 

 

Figure 1. Sample UML class diagram 
 

Different types of transactions and accounts are 
organized into two class hierarchies, rooted by an abstract 
class and an interface, Transaction and Account, 
respectively. The diagram also shows two concrete classes. 
The class CheckPostingTransaction models a transaction 
that posts a check to an account. Suppose that a check can 
be posted to only one checking account and that the 
account should have enough balance to cover the check to 
be posted. Then, this constraint can be precisely 
documented in OCL by writing following statements. 

 
context CheckPostingTransaction inv: 
   self.accounts->size() = 1 and 
   self.accounts->forAll(c: Account | c.isKindOf(CheckingAccount)) 
 
context CheckPostingTransaction inv: 
   self.accounts->forAll(c: Account | c.getBalance() >= self.amount) 
 

 
As shown, each OCL constraint is preceded by a context 

specification that identifies the UML model being 
constrained, in this case CheckPostingTransaction. As 
indicated by the keyword inv, both statements specify class 
invariants; the first constraint statement states that a 
CheckPostingTransaction object should be associated 
with only one CheckingAccount object, and the second 
statement states that the associated account should have 
enough balance to cover the check being posted. Note that 
due to its multiplicity, the account aggregation is viewed 
as a collection, and thus we can use collection operations 
such as size and forAll (see below). 

OCL comes with several primitives types such as Integer, 
Real, Boolean, and String and collection types such as 
Collection, Set, OrderedSet, Bag, and Sequence [13]. In the 
example constraints above, we used collection operations 
such as size and forAll; the size operation returns the 
number of elements contained in a collection, and the forAll 
operation tests whether an expression is true for all objects 
of a given collection. 
 
2.2 JML 

The Java Modeling Language (JML) is an interface 
specification language for Java to formally document the 
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behavior of Java program modules such as classes and 
interfaces [9]. JML specifications or assertions can be 
added directly to source code as a special kind of comments 
called annotation comments, or they can reside in separate 
specification files. In JML, the behavior of a Java class is 
specified by writing, among others, class invariants and pre 
and postconditions for the methods exported by the class. 
The assertions in class invariants and method pre and 
postconditions are usually written in a form that can be 
compiled, so that their violations can be detected at runtime 
[1] [4]. 

 
 

 

Figure 2. Sample JML specification 

 
Figure 2 shows a sample JML specification written in a 

separate specification (.jml) file. It describes the behavior 
of class SavingAccount. The JML keyword spec_public 
states that the private field bal is treated as public for 
specification purpose; e.g., it can be used in the 
specifications of public methods such as postCheck. As 
shown in the example, a method specification precedes the 
declaration of the method. The requires clause specifies 
the precondition, the assignable clause specifies the frame 
condition, and the ensures clause specifies the 
postcondition. The JML keyword old in the postcondition 
denotes the pre-state value of its expression; it is most 
commonly used in the specification of a mutation method 
such as postCheck that changes the state of an object. 

JML supports several features that make it an ideal 
language to explore our idea of checking OCL constraint at 
runtime by translating them to executable assertions. As a 
Design by Contract (DBC) [11] language for Java, it 
supports class invariants and method pre and postconditions 
as built-in language features. It combines the practicality of 
DBC language with the expressiveness and formality of 
model-oriented specification languages; its powerful 
assertion language such as various forms of quantifiers will 
allow us to translate any OCL constraint into a JML 
assertion.  In addition, the vocabulary for writing assertions 
can be tuned and enriched by add specification-purpose 
library classes; this is supported by the model import 
clause (refer to Section 4.1 for an example). 
 JML allows one to write assertions in terms of abstract 
values provided by model variables [5] (see Section 4.1). 
There are at least two advantages to writing specifications 

with abstract values instead of directly using Java variables 
and data structures. The first is that by using abstract values 
the specification does not have to be changed when the 
particular data structure used in the program is changed. 
Second, it allows the specification to be written even when 
there are no implementation data structures available. 
 As shown in the example above, JML assertions can be 
written in a separate specification file. This not only 
facilitates the propagation of changes from OCL constraints 
to automatically-generated JML assertions but also allows 
one to check OCL constraints even if no Java source code 
files are available. This also has a practical value because 
one can ship the object code for a class library to 
customers, sending the JML specifications but not the 
source code. Customers would then have documentation 
that is precise, unambiguous, but overly specific. 
Customers would not have the code, protecting proprietary 
rights. In addition, customers would not rely on details of 
the implementation of the library that they might otherwise 
glean from the code, easing the process of improving the 
code in future releases.  

// File: CheckingAccount.jml 
public class CheckingAccount { 

spec_public private int bal; 
public invariant bal >= 0; 
 
requires amt > 0 && amt <= bal; 
assignable bal; 
ensures bal == \old(bal) + amt; 
public void postCheck(int amt); 
 

// the rest of definition 
} 

 JML support the notion of specification refinement for 
associating multiple specification files to the same source 
code file or bytecode file (see Section 4). This will allow us 
to easily add and maintain automatically-generated 
assertions (from OCL constraints) and manually-written 
assertions for the same class. 

 

 
3 The Problem 

We translate OCL constraints to executable JML 
assertions to recognize inconsistencies between a UML 
design model and its implementation during the 
development phase and also to detect design drifts during 
the maintenance phase. The big question then is to translate 
an OCL constraint to a corresponding JML assertion. As 
assertions are generally written in terms of program states, 
we first need to find an appropriate mapping from OCL 
modeling elements, e.g., the accounts aggregation in the 
Transaction class, to their representations, e.g., program 
states or variables, in the implementation classes. As an 
example, let us consider the CheckPostingTransaction 
class and its OCL constraints from Section 2.1, and 
translate them to a Java implementation annotated with 
JML assertions. Figure 3 shows one such an 
implementation where JML assertions are directly 
embedded into the source code as annotation comments 
(i.e., //@ and /*@ … @*/). The accounts aggregation of 
its superclass, Transaction, is reified into a JDK set 
(java.util.Set) with its multiplicity expressed as a class 
invariant. As easily guessed, our example OCL constraints 
are also translated into JML invariants. Note that except for 
a small notational difference and the use of a universal 
quantifier (\forall) in place of OCL’s forAll operation, the 
JML assertions are direct translations of the OCL 
constraints reflecting their structures. 
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Figure 3. Java implementation with JML annotations 

 
What is wrong with the above translation and resulting 

assertions? Although at first it looks fine for this particular 
example, there are several potential problems with such a 
translation using program variables (i.e., the accounts 
field) in assertions and adding annotations directly to 
source code. The main problem is that it may not be always 
possible to find an appropriate, direct mapping between 
OCL models and Java representations; e.g., what if the 
accounts aggregation is implemented as an array? There 
may be no corresponding Java vocabulary for the OCL 
terms used in the constraints. In general, OCL constraints 
have to be recast into the vocabulary defined by a particular 
choice of representations, e.g., sets, lists, or arrays. The 
translation is not only hard but also results in assertions 
with structures different from those of the OCL constraints. 
Such assertions tend to be lengthy, hard to read and 
understand, and difficult to be traced back to the original 
OCL constraints. The translation itself is less amenable to 
automation.  

Worst of all, the translation doesn’t accommodate 
evolution or maintenance of both OCL constraints and Java 
programs. For example, what happens if the representation 
becomes changed, e.g., from sets to arrays? The whole JML 
assertions might have to be rewritten in terms of the 
vocabulary given by the new representation, i.e., arrays. 
Similarly, it is also difficult to propagate changes of OCL 
constraints to the corresponding JML assertions embedded 
in the source code. Embedding JML assertions directly into 
the source code also aggravates the problem because it 
hinders automated tool support for change propagations in 
both directions. 

 

 
4 Our Approach 
The key idea of our approach is to introduce a new JML 
library that implements the standard OCL library such as 
collection types and to store the translated assertions in 
JML specification files, separately from Java source code 

files (see Figure 4). The introduction of OCL-like library 
classes to JML enables us to map OCL constraints to JML 
assertions in a one-to-one fashion by preserving the original 
structures and using almost the same vocabulary. The 
specific technique is to write JML assertions not in terms of 
Java program states, i.e., program variables, but in terms of 
their abstractions using the library classes. In JML, this 
abstraction is called a model variable [5]. A model variable 
is different from a Java program variable in two aspects. 
First, it is a specification-only variable meaning that it can 
be referred to only in assertions, but not in program code. 
Second, its value is not directly manipulated using 
assignment statements but is given implicitly as a mapping 
from a program state, called an abstraction function (see 
Section 4.1 below for an example).  In summary, for a 
UML modeling element such as an aggregation, we 
introduce a JML model variable of an appropriate type and 
translate OCL constraints written in terms of the UML 
element into JML assertions written in terms of the 
corresponding model variable. In the following subsection, 
we will illustrate our approach in detail by using our 
running example. 

// File: Transaction.java 
import java.util.Set; 
public abstract class Transaction { 

/*@ spec_public @*/ protected Set<Account> accounts; 
//@ public invariant accounts.size() > 0; 
 

// the rest of definition 
} 
 
// File: CheckPostingTransaction.java 
public class CheckPostingTransaction extends Transaction { 

/*@ public invariant accounts.size() == 1 && 
@ (\forall a: Account; accounts.contains(a); 
@    a instanceof CheckingAccount); @*/ 

 

/*@ public invariant (\forall a:  Account; accounts.contains(a); 
@    a.getBalance() >= amount); @*/ 

 

// the rest of definitions 
} 

 
 
 

 
 

Figure 4. Approach to translating OCL into JML1

 
 
4.1 Illustration 
Let us apply our approach to the transaction classes that we 
have been playing with. Remember that the abstract class 
Transaction has an aggregation named accounts, 
representing the set of accounts involved in a transaction 
(see Figure 1), and both of the OCL constraints are written 
in terms of this aggregation. As shown in Figure 5 below, 
we introduce a JML model variable for this aggregation. 
The model variable has the same name as that of the 
aggregation and is of type OclSet. The OclSet class is from 
our new JML library and implements OCL’s set. The rest 
of the specifications are identical to the previous one except 
for renaming of the method to follow the OCL’s naming 
convention. 
 
                                                           
1 We expect that a significant portion of the translation can be automated, 
and we have a plan for developing such an automated translation tool. 
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Figure 5. JML specifications from OCL constraints 

 

How is the value of a model variable such as accounts 
defined? In other words, how can the assertions written in 
terms of a model variable can be checked at runtime? For a 
model variable to be executable, it should be provided with 
a so-called abstraction function that specifies its value as a 
mapping from a program state, i.e., program variables [5]. 
For example, the abstraction function for the model 
variable accounts can be specified in the source code of 
class Transaction as follows. 
 

 
The refines statement states that this file refines the given 

JML specification file, thus inheriting all its assertions such 
as class invariants and method specifications. The abstract 
function is specified using the represents clause. It maps 
the array representation (accountsRep) to a set abstraction 
(accounts). The static method convertFrom creates an 
OclSet object from an array. The in clause specifies a so-
called data group [10] and states that any method that can 
modify the model variable accounts can also modify the 
program variable accountsRep. In addition to the 
abstraction function, additional implementation invariants 
(e.g., no duplicates) can also be specified in terms of the 
representation variables. 

How does our approach solve the problems associated 
with translating OCL constraints into JML by referring to 
program variables? Note that even if the accounts 
aggregation is represented as an array, in JML assertions it 
is still viewed and manipulated as a set as in OCL 
constraints. Our approach thus clearly alleviates the 
problems of readability, understandability, traceability, and 
translation automation, as OCL constraints are one-to-one 
mapped to JML assertions preserving the structures and 
also using almost the same vocabulary. Let’s next consider 

the problem of evolution and maintenance. Let’s first 
consider a change to the implementation, say the 
representation from an array to a tree. This change is 
localized, as all we need to do is to rewrite the represents 
clause to define a new abstraction function for the tree. The 
rest of the specification, in particular, assertions translated 
from OCL constraints remain the same, as they were 
written in terms of the model variables. How about changes 
to OCL constraints? They also have a minimal impact and 
are localized in that we only need to rewrite the 
corresponding assertions in the specification files or, with 
automated translation, regenerate the whole specification 
files; i.e., there is no or little need to change the source code 
files. 

// File: Transaction.jml 
model import ocljml.OclSet; 
public abstract class Transaction { 

spec_public protected int amount; 
public model OclSet<Account> accounts; 
public invariant accounts.size() > 0; 

} 
 
// File: CheckPostingTransaction.jml 
public class CheckPostingTransaction extends Transaction { 

public invariant accounts.size() == 1  
(\forall a: Account; accounts.includes(a); 
a instanceof CheckingAccount); 

public invariant (\forall a:  Account; accounts.includes(a); 
a.getBalance() >= amount); 

} 
 
4.2 JML Library for OCL Collection Types 

We implemented in Java all collection types defined in 
the OCL standard library. Our classes are organized into a 
class hierarchy with an abstract class OclCollection at the 
root; other collection classes include OclSet, 
OclOrderedSet, OclBag, and OclSequence. Since our 
intention is to use them as JML model classes, all of them 
immutable; i.e., there is no method that can change the 
values of these classes. For each collection class, we 
implemented all the operations defined by OCL except for 
operations such as forAll (see below). In addition, we 
defined a set of conversion methods such as convertFrom 
to convert Java arrays and collections to our 
implementation of OCL collection types. 

In OCL, there are a number of collection operations 
called iterators that take OCL expressions as parameters 
and work on all elements of a collection. Operations such 
as select, reject, collect, forAll, and exists fall in this 
category. Because Java doesn’t support this kind of 
(higher-order) methods, no such methods are defined in our 
implementation. Instead, they are translated indirectly into 
JML expressions; e.g., operations such as forAll and exists 
are translated into JML quantifiers as done in our example. 
 

// File: Transaction.java 
//@ refines “Transaction.jml”; 
public abstract class Transaction { 

protected int amount; 
private Account[] accountsRep; //@ in accounts; 
//@ private represents accounts <-  OclSet.convertFrom(accountsRep); 

} 

5 Evaluation 
Our implementation of OCL library classes as described 

in Section 4.2 has several limitations and notable features. 
First, as the current version of JML doesn’t support 
generics introduced in Java 1.5 [2] (refer to the JML 
website at http://www.jmlspecs.org), all the collection 
classes are implemented as so-called raw types. This works 
well for all the classes and methods except for the sum 
method of the Collection type. The sum method returns 
the sum of all the elements contained in the collection. The 
OCL standard states that each element of the collection 
must be of a type supporting the binary addition (+) 
operation and the return type must be the element type 
given as a type parameter [13]. This causes a trouble in our 
raw type implementation, OclCollection, as no type 
parameter is available denoting the element type. We can’t 
specify the exact return type and we can’t make any 
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assumptions about the elements. Our solution is to specify 
the most general type, i.e., Object, as the return type and 
check each element’s runtime type for the addition 
compatibility. Depending on the types of elements, the sum 
is returned as either a Long or Double object; if at least 
one element is not addition-compatible, then an 
IllegalStateException is thrown. 

Second, as mentioned in Section 4.2, OCL defines a set 
of iterator operations such as select, reject, collect, forAll, 
and exists that take an OCL expression as a parameter. 
Because Java doesn’t yet support this kind of (higher-order) 
methods, no such methods are defined in our 
implementation. We believe that this problem can be solved 
when Java 1.7 supports a form of closure called a code 
block [6]. We also proposed to the JML developers to 
introduce a limited form of OCL-like iterators such as 
select, collect, and reject which, if adopted, will make the 
translations of these iterators more direct and natural. 

Third, some of OCL collection types such as Set and 
Sequence define an equals method, and the method is 
overloaded in that it takes an argument of the same type. In 
our implementation, however, we followed the Java 
convention and overloaded the equals method; i.e., its 
argument type is the class Object, thus overriding the one 
inherited from the Object class.  

Last, in addition to the methods defined in OCL, our 
implementation adds several new methods such as 
convertFrom to enable conversion from Java arrays and 
collections to OCL collections (see Section 4.1). 

We noticed several deficiencies in OCL specifications of 
some of collection operations. For example, operations 
such as first and last of types Sequence and OrderedSet 
are partial in that they are defined only when the sequence 
or ordered set is not empty. However, a precondition 
asserting this fact, e.g., self->nonEmpty(), is missing from 
the standard [13]. The append, preprend, insertAt, and 
subOrderedSet of type OrderedSet also have missing 
preconditions, and the at method of types Sequence and 
OrderedSet have missing postconditions.   

We are currently evaluating our approach through case 
studies. Our plan is to perform both quantitative and 
qualitative measurements to evaluate the effectiveness and 
efficiency of our approach. In particular, we are interested 
in knowing the percentage of OCL constraints that we can 
translate with our approach and the quality of the translated 
JML assertions. We will also measure the runtime 
efficiency of the translated assertions that use our new JML 
library classes. The secondary goal of our evaluation is to 
gain more insights on our approach, especially its support 
for and limitations on automation, prior to a full-blown 
development of an automated OCL-to-JML translation tool. 

 
6 Conclusion 

We proposed an approach to translating OCL constraints 
to JML assertions so that violations of design constraints 
can be detected at runtime. The key components of our 

approach are (1) new JML library classes implementing 
OCL collection types, (2) specification-only variables, 
called model variables, and (3) separation of specifications 
from source code. Although we are still evaluating our 
approach, we believe that our library-based approach will 
enhance the quality of the translated assertions, 
accommodate constraint and implementation changes rather 
than avoiding them, and support translation. Our approach 
will assist in coping with the plaguing problem of design-
implementation inconsistencies, through runtime assurance. 
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