
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

2-1-2008

A Library-Based Approach to Translating OCL
Constraints to JML Assertions for Runtime
Checking
Carmen Avila
University of Texas at El Paso, ceavila3@miners.utep.edu

Guillermo Flores, Jr.
University of Texas at El Paso, gflores3@miners.utep.edu

Yoonsik Cheon
University of Texas at El Paso, ycheon@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-08-05

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Avila, Carmen; Flores, Jr., Guillermo; and Cheon, Yoonsik, "A Library-Based Approach to Translating OCL Constraints to JML
Assertions for Runtime Checking" (2008). Departmental Technical Reports (CS). Paper 71.
http://digitalcommons.utep.edu/cs_techrep/71

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/71?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

A Library-Based Approach to Translating OCL Constraints to JML

Assertions for Runtime Checking

Carmen Avila, Guillermo Flores, Jr., and Yoonsik Cheon

TR #08-05
February 2008; revised May 2008

Keywords: Class invariant, pre and postconditions, assertion, runtime assertion checking, object-oriented
class library, OCL, JML.

1998 CR Categories: D.2.2 [Software Engineering] Design Tools and Techniques⎯modules and
interfaces, object-oriented design methods; D.2.4 [Software Engineering] Software/Program
Verification⎯assertion checkers, class invariants, formal methods, programming by contract; D.2.6
[Software Engineering] Design⎯methodologies, representation; F.3.1 [Logics and Meanings of Programs]
Specifying and Verifying and Reasoning about Programs⎯assertions, invariants, pre- and post-conditions,
specification techniques.

Appeared in the International Conference on Software Engineering Research and Practice, July 14-17,
2008, Las Vegas, Nevada, U.S.A., pages 403-408.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A

A Library-Based Approach to Translating OCL
Constraints to JML Assertions for Runtime Checking

 Carmen Avila, Guillermo Flores, Jr., and Yoonsik Cheon
Department of Computer Science

The University of Texas at El Paso
El Paso, TX, USA

{ceavila3, gflores3}@miners.utep.edu, ycheon@utep.edu

Abstract – OCL is a formal notation to specify constraints
on UML models that cannot otherwise be expressed by
diagrammatic notations such as class diagrams. Using
OCL one can document detailed design decisions and
choices along with the behavior, e.g., class invariants and
method pre and postconditions. However, OCL constraints
cannot be directly executed and checked at runtime by an
implementation, thus constraint violations may not be
detected or noticed, causing many potential development
and maintenance problems. In this paper we propose an
approach to checking OCL constraints at runtime by
translating them to executable JML assertions. The key
components of our approach are a set of JML library
classes, use of model variables, and a separation of JML
assertions from source code. The library classes implement
OCL collection types and facilitate a direct mapping from
OCL constraints to JML assertions by using model
variables. The translated JML assertions are stored in
specification files, separate from source code files, to ease
change management of OCL constraints and Java source
code. Our approach also facilitates a seamless transition
from OCL-based designs to Java implementations.

Keywords: class invariant, pre and postconditions,
assertion, runtime assertion checking, object-oriented class
library, OCL, JML

1 Introduction
 A UML diagram such as a class diagram cannot express

a rich semantics of an application being modeled [1]. There
is a need for describing additional constraints on the objects
and entities present in the model. The Object Constraint
Language (OCL) is a textual, formal specification language
for specifying the semantics of UML models [13]; OCL
specifications are commonly referred to as constraints.
Using OCL, for example, one can specify the behavior of a
class by writing, among other things, class invariants and
method pre and postconditions.

As a design notation, however, OCL is not executable,
and OCL constraints are not reified to implementation
artifacts. This may lead to many problems in development

and maintenance, such as inconsistency. For example, as
design constraints are not explicitly expressed in source
code, a change to source code that causes a drift or
deviation from the initial design may not be detected or
noticed by the developer.

In this paper we advocate runtime assertion checking as a
partial solution to the problem of design drift. We propose
to reify OCL constraints to source code in a form that can
be executed and checked at run-time. Specifically we
translate OCL constraints to executable assertions written
in JML. JML is a formal behavioral interface specification
language for Java [9], and a significant subset of it can be
checked at runtime [1] [4] (see Section 2.2). Assertions
translated from OCL constraints can detect violations of
design constraints, thus design drifts at run-time. They also
provide excellent API documents that are precise and kept
synchronized with the implementation. In addition, as
evidenced by a recent introduction of the assert statement
to the Java language, assertions are recognized as a
practical programming tool and are said to be most
effective when they are generated from formal
specifications such as OCL constraints.

For the translation we use a set of immutable library
classes that implement the collection types defined in the
OCL standard library [13]. The use of library classes makes
the translation intuitive and traceable, as most OCL
constraints are directly mapped to the corresponding JML
assertions. We also expect the use of library classes
facilitate automation of the translation. Another feature of
our approach is the way we organize translated assertions.
Instead of embedding them directly to source code, we
store them in separate specification files; the JML compiler
does an appropriate weaving by combining the JML
specification files with Java source code files [4]. This
organization facilitates change management of both OCL
constraints and Java source code; e.g., changes to OCL
constraints can be automatically propagated to JML
assertions by retranslating or regenerating the JML
specification files, and thus having a minimal impact on the
implementation, i.e., Java source code. Our approach is
facilitated by several language and tool features of JML, in
particular, specification-only variables called model
variables [5] and specification refinement (see Section 4).

1

There is a few previous work done on runtime assurance
of OCL constraints by translating them to programming
languages [1] [14]. As in our approach, the common theme
here was to define a set of OCL library classes for the
translation. However, OCL constraints are typically
translated into source code, i.e., a sequence of program
statements, not into assertions or annotations; therefore,
they cannot be used as source code-level documents, e.g.,
precise API specifications.

An assertion is a predicate placed in a program to
indicate the truth of the assertion at that place [8] [12]. It is
used to specify and reason about the correctness of a
program both statically, as in Hoare-style pre and post-
conditions [8], and dynamically, as in Design by Contract
[11] and assert macros or statements [12]. Surprisingly,
however, there is not much work done for translating OCL
to executable (JML) assertions. One exception is the work
of Hamie, which inspired our own work. Hamie suggested
translating OCL constraints to JML assertions by defining a
mapping for OCL operators [7]. The operators of OCL
collections types are mapped directly or indirectly to the
methods of JML’s collection model types that implement
various kinds of container abstractions, such as sets, bags,
and sequences. However, the organization, structures, and
vocabulary of JML collection types are somewhat different
from those of OCL, and it is unclear how this mapping is to
be reified into implementation artifacts, e.g., JML
assertions directly referring to program variables. The use
of both model variables and immutable collection classes
proposed in our approach will greatly simplify the
implementation of the mapping and also result in a clear
and intuitive mapping. For the development of an
automated translation tool, we plan to adapt and refine his
mapping.

The remainder of this paper is organized as follows. In
Section 2 we briefly review OCL and JML through a small
example that we will use throughout this paper. In Section
3 we explain the problem of translating OCL constraints to
assertions by referring to program states or variables. In
Section 4 we describe our approach by applying it to our
running example. We also discuss how our approach solves
the problems described in Section 3. In Section 5 we
mention our on-going evaluation effort, which is followed
by a concluding remark in Section 6.

2 Background
2.1 OCL

The Object Constraint Language (OCL) [13] is a text-
based, formal specification language extension to UML for
specifying constraints or behaviors of UML models that
cannot otherwise be expressed by diagrammatic notation. It
supplements UML by providing concise and precise
expressions that have neither the ambiguities of natural
language nor the inherent difficulty of using complex
mathematics. As an example, consider the class diagram

shown in Figure 1 that depicts different types of banking
transactions along with associated accounts.

Figure 1. Sample UML class diagram

Different types of transactions and accounts are
organized into two class hierarchies, rooted by an abstract
class and an interface, Transaction and Account,
respectively. The diagram also shows two concrete classes.
The class CheckPostingTransaction models a transaction
that posts a check to an account. Suppose that a check can
be posted to only one checking account and that the
account should have enough balance to cover the check to
be posted. Then, this constraint can be precisely
documented in OCL by writing following statements.

context CheckPostingTransaction inv:
 self.accounts->size() = 1 and
 self.accounts->forAll(c: Account | c.isKindOf(CheckingAccount))

context CheckPostingTransaction inv:
 self.accounts->forAll(c: Account | c.getBalance() >= self.amount)

As shown, each OCL constraint is preceded by a context

specification that identifies the UML model being
constrained, in this case CheckPostingTransaction. As
indicated by the keyword inv, both statements specify class
invariants; the first constraint statement states that a
CheckPostingTransaction object should be associated
with only one CheckingAccount object, and the second
statement states that the associated account should have
enough balance to cover the check being posted. Note that
due to its multiplicity, the account aggregation is viewed
as a collection, and thus we can use collection operations
such as size and forAll (see below).

OCL comes with several primitives types such as Integer,
Real, Boolean, and String and collection types such as
Collection, Set, OrderedSet, Bag, and Sequence [13]. In the
example constraints above, we used collection operations
such as size and forAll; the size operation returns the
number of elements contained in a collection, and the forAll
operation tests whether an expression is true for all objects
of a given collection.

2.2 JML

The Java Modeling Language (JML) is an interface
specification language for Java to formally document the

2

behavior of Java program modules such as classes and
interfaces [9]. JML specifications or assertions can be
added directly to source code as a special kind of comments
called annotation comments, or they can reside in separate
specification files. In JML, the behavior of a Java class is
specified by writing, among others, class invariants and pre
and postconditions for the methods exported by the class.
The assertions in class invariants and method pre and
postconditions are usually written in a form that can be
compiled, so that their violations can be detected at runtime
[1] [4].

Figure 2. Sample JML specification

Figure 2 shows a sample JML specification written in a

separate specification (.jml) file. It describes the behavior
of class SavingAccount. The JML keyword spec_public
states that the private field bal is treated as public for
specification purpose; e.g., it can be used in the
specifications of public methods such as postCheck. As
shown in the example, a method specification precedes the
declaration of the method. The requires clause specifies
the precondition, the assignable clause specifies the frame
condition, and the ensures clause specifies the
postcondition. The JML keyword old in the postcondition
denotes the pre-state value of its expression; it is most
commonly used in the specification of a mutation method
such as postCheck that changes the state of an object.

JML supports several features that make it an ideal
language to explore our idea of checking OCL constraint at
runtime by translating them to executable assertions. As a
Design by Contract (DBC) [11] language for Java, it
supports class invariants and method pre and postconditions
as built-in language features. It combines the practicality of
DBC language with the expressiveness and formality of
model-oriented specification languages; its powerful
assertion language such as various forms of quantifiers will
allow us to translate any OCL constraint into a JML
assertion. In addition, the vocabulary for writing assertions
can be tuned and enriched by add specification-purpose
library classes; this is supported by the model import
clause (refer to Section 4.1 for an example).
 JML allows one to write assertions in terms of abstract
values provided by model variables [5] (see Section 4.1).
There are at least two advantages to writing specifications

with abstract values instead of directly using Java variables
and data structures. The first is that by using abstract values
the specification does not have to be changed when the
particular data structure used in the program is changed.
Second, it allows the specification to be written even when
there are no implementation data structures available.
 As shown in the example above, JML assertions can be
written in a separate specification file. This not only
facilitates the propagation of changes from OCL constraints
to automatically-generated JML assertions but also allows
one to check OCL constraints even if no Java source code
files are available. This also has a practical value because
one can ship the object code for a class library to
customers, sending the JML specifications but not the
source code. Customers would then have documentation
that is precise, unambiguous, but overly specific.
Customers would not have the code, protecting proprietary
rights. In addition, customers would not rely on details of
the implementation of the library that they might otherwise
glean from the code, easing the process of improving the
code in future releases.

// File: CheckingAccount.jml
public class CheckingAccount {

spec_public private int bal;
public invariant bal >= 0;

requires amt > 0 && amt <= bal;
assignable bal;
ensures bal == \old(bal) + amt;
public void postCheck(int amt);

// the rest of definition
}

 JML support the notion of specification refinement for
associating multiple specification files to the same source
code file or bytecode file (see Section 4). This will allow us
to easily add and maintain automatically-generated
assertions (from OCL constraints) and manually-written
assertions for the same class.

3 The Problem

We translate OCL constraints to executable JML
assertions to recognize inconsistencies between a UML
design model and its implementation during the
development phase and also to detect design drifts during
the maintenance phase. The big question then is to translate
an OCL constraint to a corresponding JML assertion. As
assertions are generally written in terms of program states,
we first need to find an appropriate mapping from OCL
modeling elements, e.g., the accounts aggregation in the
Transaction class, to their representations, e.g., program
states or variables, in the implementation classes. As an
example, let us consider the CheckPostingTransaction
class and its OCL constraints from Section 2.1, and
translate them to a Java implementation annotated with
JML assertions. Figure 3 shows one such an
implementation where JML assertions are directly
embedded into the source code as annotation comments
(i.e., //@ and /*@ … @*/). The accounts aggregation of
its superclass, Transaction, is reified into a JDK set
(java.util.Set) with its multiplicity expressed as a class
invariant. As easily guessed, our example OCL constraints
are also translated into JML invariants. Note that except for
a small notational difference and the use of a universal
quantifier (\forall) in place of OCL’s forAll operation, the
JML assertions are direct translations of the OCL
constraints reflecting their structures.

3

Figure 3. Java implementation with JML annotations

What is wrong with the above translation and resulting

assertions? Although at first it looks fine for this particular
example, there are several potential problems with such a
translation using program variables (i.e., the accounts
field) in assertions and adding annotations directly to
source code. The main problem is that it may not be always
possible to find an appropriate, direct mapping between
OCL models and Java representations; e.g., what if the
accounts aggregation is implemented as an array? There
may be no corresponding Java vocabulary for the OCL
terms used in the constraints. In general, OCL constraints
have to be recast into the vocabulary defined by a particular
choice of representations, e.g., sets, lists, or arrays. The
translation is not only hard but also results in assertions
with structures different from those of the OCL constraints.
Such assertions tend to be lengthy, hard to read and
understand, and difficult to be traced back to the original
OCL constraints. The translation itself is less amenable to
automation.

Worst of all, the translation doesn’t accommodate
evolution or maintenance of both OCL constraints and Java
programs. For example, what happens if the representation
becomes changed, e.g., from sets to arrays? The whole JML
assertions might have to be rewritten in terms of the
vocabulary given by the new representation, i.e., arrays.
Similarly, it is also difficult to propagate changes of OCL
constraints to the corresponding JML assertions embedded
in the source code. Embedding JML assertions directly into
the source code also aggravates the problem because it
hinders automated tool support for change propagations in
both directions.

4 Our Approach
The key idea of our approach is to introduce a new JML
library that implements the standard OCL library such as
collection types and to store the translated assertions in
JML specification files, separately from Java source code

files (see Figure 4). The introduction of OCL-like library
classes to JML enables us to map OCL constraints to JML
assertions in a one-to-one fashion by preserving the original
structures and using almost the same vocabulary. The
specific technique is to write JML assertions not in terms of
Java program states, i.e., program variables, but in terms of
their abstractions using the library classes. In JML, this
abstraction is called a model variable [5]. A model variable
is different from a Java program variable in two aspects.
First, it is a specification-only variable meaning that it can
be referred to only in assertions, but not in program code.
Second, its value is not directly manipulated using
assignment statements but is given implicitly as a mapping
from a program state, called an abstraction function (see
Section 4.1 below for an example). In summary, for a
UML modeling element such as an aggregation, we
introduce a JML model variable of an appropriate type and
translate OCL constraints written in terms of the UML
element into JML assertions written in terms of the
corresponding model variable. In the following subsection,
we will illustrate our approach in detail by using our
running example.

// File: Transaction.java
import java.util.Set;
public abstract class Transaction {

/*@ spec_public @*/ protected Set<Account> accounts;
//@ public invariant accounts.size() > 0;

// the rest of definition
}

// File: CheckPostingTransaction.java
public class CheckPostingTransaction extends Transaction {

/*@ public invariant accounts.size() == 1 &&
@ (\forall a: Account; accounts.contains(a);
@ a instanceof CheckingAccount); @*/

/*@ public invariant (\forall a: Account; accounts.contains(a);
@ a.getBalance() >= amount); @*/

// the rest of definitions
}

Figure 4. Approach to translating OCL into JML1

4.1 Illustration
Let us apply our approach to the transaction classes that we
have been playing with. Remember that the abstract class
Transaction has an aggregation named accounts,
representing the set of accounts involved in a transaction
(see Figure 1), and both of the OCL constraints are written
in terms of this aggregation. As shown in Figure 5 below,
we introduce a JML model variable for this aggregation.
The model variable has the same name as that of the
aggregation and is of type OclSet. The OclSet class is from
our new JML library and implements OCL’s set. The rest
of the specifications are identical to the previous one except
for renaming of the method to follow the OCL’s naming
convention.

1 We expect that a significant portion of the translation can be automated,
and we have a plan for developing such an automated translation tool.

4

Figure 5. JML specifications from OCL constraints

How is the value of a model variable such as accounts
defined? In other words, how can the assertions written in
terms of a model variable can be checked at runtime? For a
model variable to be executable, it should be provided with
a so-called abstraction function that specifies its value as a
mapping from a program state, i.e., program variables [5].
For example, the abstraction function for the model
variable accounts can be specified in the source code of
class Transaction as follows.

The refines statement states that this file refines the given

JML specification file, thus inheriting all its assertions such
as class invariants and method specifications. The abstract
function is specified using the represents clause. It maps
the array representation (accountsRep) to a set abstraction
(accounts). The static method convertFrom creates an
OclSet object from an array. The in clause specifies a so-
called data group [10] and states that any method that can
modify the model variable accounts can also modify the
program variable accountsRep. In addition to the
abstraction function, additional implementation invariants
(e.g., no duplicates) can also be specified in terms of the
representation variables.

How does our approach solve the problems associated
with translating OCL constraints into JML by referring to
program variables? Note that even if the accounts
aggregation is represented as an array, in JML assertions it
is still viewed and manipulated as a set as in OCL
constraints. Our approach thus clearly alleviates the
problems of readability, understandability, traceability, and
translation automation, as OCL constraints are one-to-one
mapped to JML assertions preserving the structures and
also using almost the same vocabulary. Let’s next consider

the problem of evolution and maintenance. Let’s first
consider a change to the implementation, say the
representation from an array to a tree. This change is
localized, as all we need to do is to rewrite the represents
clause to define a new abstraction function for the tree. The
rest of the specification, in particular, assertions translated
from OCL constraints remain the same, as they were
written in terms of the model variables. How about changes
to OCL constraints? They also have a minimal impact and
are localized in that we only need to rewrite the
corresponding assertions in the specification files or, with
automated translation, regenerate the whole specification
files; i.e., there is no or little need to change the source code
files.

// File: Transaction.jml
model import ocljml.OclSet;
public abstract class Transaction {

spec_public protected int amount;
public model OclSet<Account> accounts;
public invariant accounts.size() > 0;

}

// File: CheckPostingTransaction.jml
public class CheckPostingTransaction extends Transaction {

public invariant accounts.size() == 1
(\forall a: Account; accounts.includes(a);
a instanceof CheckingAccount);

public invariant (\forall a: Account; accounts.includes(a);
a.getBalance() >= amount);

}

4.2 JML Library for OCL Collection Types

We implemented in Java all collection types defined in
the OCL standard library. Our classes are organized into a
class hierarchy with an abstract class OclCollection at the
root; other collection classes include OclSet,
OclOrderedSet, OclBag, and OclSequence. Since our
intention is to use them as JML model classes, all of them
immutable; i.e., there is no method that can change the
values of these classes. For each collection class, we
implemented all the operations defined by OCL except for
operations such as forAll (see below). In addition, we
defined a set of conversion methods such as convertFrom
to convert Java arrays and collections to our
implementation of OCL collection types.

In OCL, there are a number of collection operations
called iterators that take OCL expressions as parameters
and work on all elements of a collection. Operations such
as select, reject, collect, forAll, and exists fall in this
category. Because Java doesn’t support this kind of
(higher-order) methods, no such methods are defined in our
implementation. Instead, they are translated indirectly into
JML expressions; e.g., operations such as forAll and exists
are translated into JML quantifiers as done in our example.

// File: Transaction.java
//@ refines “Transaction.jml”;
public abstract class Transaction {

protected int amount;
private Account[] accountsRep; //@ in accounts;
//@ private represents accounts <- OclSet.convertFrom(accountsRep);

}

5 Evaluation
Our implementation of OCL library classes as described

in Section 4.2 has several limitations and notable features.
First, as the current version of JML doesn’t support
generics introduced in Java 1.5 [2] (refer to the JML
website at http://www.jmlspecs.org), all the collection
classes are implemented as so-called raw types. This works
well for all the classes and methods except for the sum
method of the Collection type. The sum method returns
the sum of all the elements contained in the collection. The
OCL standard states that each element of the collection
must be of a type supporting the binary addition (+)
operation and the return type must be the element type
given as a type parameter [13]. This causes a trouble in our
raw type implementation, OclCollection, as no type
parameter is available denoting the element type. We can’t
specify the exact return type and we can’t make any

5

assumptions about the elements. Our solution is to specify
the most general type, i.e., Object, as the return type and
check each element’s runtime type for the addition
compatibility. Depending on the types of elements, the sum
is returned as either a Long or Double object; if at least
one element is not addition-compatible, then an
IllegalStateException is thrown.

Second, as mentioned in Section 4.2, OCL defines a set
of iterator operations such as select, reject, collect, forAll,
and exists that take an OCL expression as a parameter.
Because Java doesn’t yet support this kind of (higher-order)
methods, no such methods are defined in our
implementation. We believe that this problem can be solved
when Java 1.7 supports a form of closure called a code
block [6]. We also proposed to the JML developers to
introduce a limited form of OCL-like iterators such as
select, collect, and reject which, if adopted, will make the
translations of these iterators more direct and natural.

Third, some of OCL collection types such as Set and
Sequence define an equals method, and the method is
overloaded in that it takes an argument of the same type. In
our implementation, however, we followed the Java
convention and overloaded the equals method; i.e., its
argument type is the class Object, thus overriding the one
inherited from the Object class.

Last, in addition to the methods defined in OCL, our
implementation adds several new methods such as
convertFrom to enable conversion from Java arrays and
collections to OCL collections (see Section 4.1).

We noticed several deficiencies in OCL specifications of
some of collection operations. For example, operations
such as first and last of types Sequence and OrderedSet
are partial in that they are defined only when the sequence
or ordered set is not empty. However, a precondition
asserting this fact, e.g., self->nonEmpty(), is missing from
the standard [13]. The append, preprend, insertAt, and
subOrderedSet of type OrderedSet also have missing
preconditions, and the at method of types Sequence and
OrderedSet have missing postconditions.

We are currently evaluating our approach through case
studies. Our plan is to perform both quantitative and
qualitative measurements to evaluate the effectiveness and
efficiency of our approach. In particular, we are interested
in knowing the percentage of OCL constraints that we can
translate with our approach and the quality of the translated
JML assertions. We will also measure the runtime
efficiency of the translated assertions that use our new JML
library classes. The secondary goal of our evaluation is to
gain more insights on our approach, especially its support
for and limitations on automation, prior to a full-blown
development of an automated OCL-to-JML translation tool.

6 Conclusion

We proposed an approach to translating OCL constraints
to JML assertions so that violations of design constraints
can be detected at runtime. The key components of our

approach are (1) new JML library classes implementing
OCL collection types, (2) specification-only variables,
called model variables, and (3) separation of specifications
from source code. Although we are still evaluating our
approach, we believe that our library-based approach will
enhance the quality of the translated assertions,
accommodate constraint and implementation changes rather
than avoiding them, and support translation. Our approach
will assist in coping with the plaguing problem of design-
implementation inconsistencies, through runtime assurance.

Acknowledgement
Avila and Cheon’s work was supported in part by NSF
under grants CNS-0509299 and CNS-0707874.

References
[1] D. Arnold, “C#/OCL Compiler Website,” available from at

http://www.ewebsimplex.net/csocl, February 23, 2007.
[2] G. Bracha, “Generics in the Java Programming Language”,

February 2004, last retrieved on May 14, 2008 from
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf.

[3] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML
tools and applications,” International Journal on Software
Tools for Technology Transfer, 7(3):212-232, June 2005.

[4] Y. Cheon and G. T. Leavens, “A runtime assertion checker
for the Java Modeling Language (JML),” in Proceedings of
International Conference on Software Engineering Research
and Practice, pp. 322-328, Las Vegas, Nevada, June 2002.

[5] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards,
“Model variables: Cleanly supporting abstraction in design
by contract,” Software-Practice & Experience, 35(6):583-
599, May 2005.

[6] D. Flanagan, “The Open Road: Looking Ahead to Java 7”,
August 2007, http://today.java.net/pub/a/today/2007/08/09/
looking-ahead-to-java-7.html, retrieved on May 14, 2008.

[7] A. Hamie, “Translating the Object Constraint Language into
the Java Modeling Language,” in Proceedings of the ACM
Symposium on Applied Computing, pages 1531-1535, 2004.

[8] C.A.R. Hoare, “An axiomatic basis of computer
programming,” Communications of ACM, 12(10):576-580,
October 1969.

[9] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary
design of JML: A behavioral interface specification language
for Java,” ACM SIGSOFT Software Engineering Notes,
31(3):1-38, March 2006.

[10] K. R. M. Leino, “Data groups: specifying the modification of
extended state,” OOPLA ’98 Conference Proceedings,
SIGPLAN Notices, 33(10):144-153, October, 1998.

[11] B. Meyer, “Applying design by contract,” Computer,
25(10):40-51, October 1992.

[12] D. S. Rosenblum, “A practical approach to programming
with assertions,” IEEE Transactions on Software
Engineering, 21(1):19-31, January 1995.

[13] J. Warmer and A. Kleppe, “The Object Constraint Language:
Getting Your Models Ready for MDA,” 2nd edition, Addison-
Wesley, 2003.

[14] J. Warmer and A. Kleppe, “Octopus Website: OCL Tool for
Precise UML Specifications,” http://www.klasse.nl/octopus,
last retrieved on February 23, 2007.

6

	University of Texas at El Paso
	DigitalCommons@UTEP
	2-1-2008

	A Library-Based Approach to Translating OCL Constraints to JML Assertions for Runtime Checking
	Carmen Avila
	Guillermo Flores, Jr.
	Yoonsik Cheon
	Recommended Citation

