University of Texas at El Paso

Digital Commons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

4-1-2008

Sloth-NES and the Possibility of using Fuzzy
Control to Optimize Cache Management

Ryan C. Spring

Eric Freudenthal
University of Texas at El Paso, efreudenthal@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

b Part of the Computer Engineering Commons

Comments:

Technical Report: UTEP-CS-08-22

Published in Proceedings of the 27th International Conference of the North American Fuzzy Information
Processing Society NAFIPS'2008, New York, New York, May 19-22, 2008.

Recommended Citation
Spring, Ryan C. and Freudenthal, Eric, "Sloth-NFS and the Possibility of using Fuzzy Control to Optimize Cache Management"

(2008). Departmental Technical Reports (CS). Paper 89.
http://digitalcommons.utep.edu/cs_techrep/89

This Article is brought to you for free and open access by the Department of Computer Science at Digital Commons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of Digital Commons@UTEP. For more information, please contact

Iweber@utep.edu.

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/89?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Sloth-NFS and the Possibility of using Fuzzy
Control to Optimize Cache Management

Ryan C. Spring and Eric A. Freudenthal
Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79902
Email: rcs@spring-west.net, efreudenthal @utep.edu

Abstract—Modern software systems are complex and increas-
ingly vulnerable to malicious attack. In order to apply bug fixes
and protect against security weaknesses, workstation administra-
tors must continuously patch operating system and application
program installations. To simplify this process, administrators
generally configure systems into clusters with common installa-
tions of operating systems and application programs in a manner
that patches and other routine maintenance can be applied en
masse. Two widely used approaches offer complementary advan-
tages: Installations and updates are particularly convenient when
all data including operating system and programs is served by
traditional centralized network-connected file servers (networked
file systems) because administrators need only maintain a single
image that is distributed online to all workstations. In contrast,
operating systems and application programs can be installed
onto disk drives within each workstation. This mass replication
of common data provides high aggregate bandwidth through
parallelism since each disk operates independently. However, in
contrast to the network file system approach, it is substantially
more difficult to keep a large network of systems up to date
when each system has an autonomous installation. Through the
aggressive use of cooperative file caching, we expect that sloth-
NFS is will provide the advantages of both approaches.

In this paper, we discuss the administrative problems with
current distribution methods for program and operating system
installations, analyze design decisions necessary in Sloth-NFS and
present results from an initial simulator experiment.

I. OVERVIEW

Technical administrative costs are a major challenge for
the modern enterprise. These costs are high, because many
hours of administrator’s time are required to perform a large
number of tasks related to basic system maintenance. Key
administration challenges include:

o Adding Clients: As the user’s needs grow and change,
needs for client machines change, administrators must
add new client machines to the cluster.

o Emergency Update and Patching: To ensure system
security and stability updates, administrators must apply
them quickly to all systems with the affected software.

+ Routine Application Software Update: As new versions
of application software are released, administrators make
them available on systems.

o OS Reinstallation and Major Upgrade:

As new operating system software is released, adminis-
trators must update systems to use it.

Not Altered by User| | Altered by User
OS Installation ‘ User Files ‘
App Installation ‘Temporary Files ‘
Libraries
Com. Config.
Fig. 1. File Types on a Network Client

To limit costs, systems are frequently configured as clusters
with identical installations of operating systems and applica-
tion programs. A feature of this approach is that it facilitates
the application of administrative updates to the group en
masse.

As shown in Figure 1, unlike user or temporary files,
system installations, including operating systems, application
programs, libraries, and common configuration data, should
not be changed by ordinary users. Since such changes can
cause security or other administrative problems, operating sys-
tems security mechanisms are frequently employed to prevent
users from making these changes. In centralized installations,
it is common to distribute these files in a read-only networked
file system in a manner that only permits changes to be applied
directly to the server by administrators.

Two widely used approaches to cluster configuration, which
are organized into clusters. These two approaches offer com-
plementary advantages: Read-only network file systems and
Mass Replications.

A. Read-only Network Filesystems

In this section, we describe the distribution of operating
system and application programs through the use of a read-
only networked file system. In this approach, common applica-
tion and operating system installations are stored on a central

Server

7
/ R
/ s
i a

!
Request
I

Client Client Client

Fig. 2. A typical network filesystem

server, which makes them available to client workstations,
through a network filesystem.

The centralized network filesystem approach is well suited
for all four administrative tasks since only the filesystem being
served by the server must be changed. The administrative tasks
are easily performed as follows:

o Adding Clients: New systems must only be configured
to boot from the network filesystem.

« Emergency Update and Patching: Administrators patch
network filesystem. Clients instantly see the new patched
installations on the central server.

o Routine Application Software Update: Administrators
install the new version of the application software on the
central server, and all subsequent file open operations will
be directed to it.

¢ OS Reinstallation and Major upgrade: At times, the
most efficient approach to distributing a major update
is through the complete replacement of a filesystem. In
these cases, existing network protocols can direct the
client to reboot and mount the replacement filesystem.

The weakness of centralized network filesystem approach
is its centralization, which leads to a network hot spot and
server congestion. All clients must send and receive data from
central server. As the number of clients increases, the load on
the server increases as well as the load on the network in the
vicinity of the server.

B. Mass Replications

The most common alternative to the use of a networked file
system to distribute operating system and application programs
is the mass replication of these files onto disks directly
connected to each client. While this approach eliminates
congestion at the server, it requires substantially more compli-
cated infrastructure and effort to administer since patches and
updates must be installed onto each system independently.

In a mass replication, common application and operating
system installations are stored on a local storage device, which
is periodically patched to update the various installations on
the device.

With mass replication, the network hot spot problem is al-
leviated when each client has a current copy of all installation
files. However, a centralized server can become congested if
it is used to simultaneously provide installation images or
updates to many clients.

o Emergency Update and Patching: Emergency update
requires both the updating of the central copy of the
installation and the application of patches at each of the
clients. While there is substantial support for automatic
dissemination of patches (usually via a centralized net-
work filesystem), these systems are complex and it can
be problematic if clients miss a critical patch or install
patches in differing orders. Finally, the mass distribution
of a large patch to many systems may saturate a cen-
tralized server, delaying installation and reducing overall
system performance.

« Routine Application Software Update: Like emergency
updates, non-critical updates require both the updating
of the central copy of the installation as well as the
initiation of replication. This process is less time-critical
than emergency updates, but is similarly complex.

o OS Reinstallation and Major Upgrades: Installation
requires both the updating of the central copy as well as
the initiation of replication. This may be triggered by an
emergency update and the time required to disseminate
the new full installations may disrupt critical operations.

C. Summary

These two complementary approaches have complemen-
tary advantages and disadvantages. Network filesystems are
maintainable, but not scalable. Mass replication schemes are
less usable requiring more effort to maintain, but offer higher
performance, especially in larger clusters where aggregate load
to the central server may be much greater. We are investigation
an alternate approach with the usability of network filesystems
and the scalability of mass replication. We theorize this can
be best achieved through a novel network filesystem with a
cooperative cache. We call this system Sloth-NFS.

II. SLOTH-NFS

Sloth-NFS extends the NSF network filesystem with a
cooperative cache that enables clients to cache blocks that they
share to other clients. This cooperative cache is expected to
permit the majority of file accesses to be satisfied by clients
without server involvement.

Clients participating in the cache attempt to resolve accesses
for chunks in the following order:

1) Available in memory: The chunk has been accessed
by the client recently and a copy remains available in
client’s memory

2) Available from client: The chunk is available from
another client, so it is transferred from there rather than
the central server.

3) Available from server: The chunk is not available
elsewhere, so it retrieved from the file server.

Server

4
o Request to client
,”"‘ ! - T T T T~
- , - ~
; /__,..r" ’ \
/ o / \
! ! |I T \\
] : K BN
Request | Answer ' Answer from client™~, '
/ L 4 R
Client Client Client
Fig. 3. Sloth-NFS Operation

Sloth-NFS will have the administrative advantages of con-
ventional networked filesystem. Furthermore, since, in Sloth-
NFS, many requests will be satisfied by a large number of
clients rather than only by a central server, we anticipate
that client file access latency will be substantially reduced,
especially in large installations.

III. PREVIOUS WORK

The first widely used network filesystem was NFS (network
filesystem) [1] introduced by Sun Microsystems in 1984. NFS
has become the standard production network filesystem for
use in Unix/Linux networks. It is a central server filesystem
in which all file accesses are answered by a central server.

It has served as the basis of many advanced research
network filesystems and will serve as the basis for Sloth-NFS.

Scalability issues with NFS led to the development of the
Andrew filesystem at Carnegie Mellon that caches filesystem
chunks in disks installed within clients. Though Andrew
clients cache chunks on clients it is not cooperative: neigh-
boring clients can’t retrieve chunks from each other’s caches.

Others have considered the augmentation of a networked
filesystem with a cooperative cache. NFS-CC [2] is a research
network filesystem based on traditional NFS with the addition
of server-based redirection. Files accesses may either be
requested and retrieved from the server, or the server may
redirect the request to another client that provides the chunk
from a local cache.

Since every request for a chunk in NFS-CC must be com-
municated to the central server, this server remains a resource
bottleneck. This effect can be aggravated if the server is not
co-located with clients and instead installed in a distant server
room since all requests must be transmitted over this high-
latency connection. We hypothesize that this approach, while
less centralized then traditional NFS and thereby offering
better performance then it, is still more centralized then is
optimal. Thus there is still room for improvement with the
more decentralized approach like Sloth-NFS

An alternative variant of NFS with cooperative caching is
Shark [3] Similar to NFS-CC the Shark server is still the first
recipient of all file access requests and the chunks are cached at
clients (cachers). However, it adds an extra layer of indirection
involving the Coral Distributed Hash Table. In Shark, the client

first queries the Shark server for a list of chunks that comprise
a file. The clients then look up the chunk — cacher mapping
in Coral. If one exists, the chunk is retrieved from the cacher.
If not, it is retrieved from the Shark server.

While we draw much inspiration from some details of this
system, our goal is considerably different. Our target is local
networks, where communication latency is low and bandwidth
is high. In contrast, Shark targeted wide area networks such
as the Internet, where latency is less critical.

IV. DESIGN

As is common in cache design, our work will address mech-
anisms and policy for placement, replacement, and lookup.
There are three key design challenges in the cooperative cache
of Sloth-NFS: Placement, Replacement and Lookup.

Placement is the dynamic determination of which clients
will cache a chunk. We are considering three approaches:

1) Lazy: File chunks are cached at the participants that
needed the chunk recently.

2) Load Driven: File chunks are cached at participants
that haven’t needed the chunk, but which have available
memory capacity to cache them.

3) Hybrid: Participants cache chunks in both lazy and load
driven manners.

The replacement challenge involves determining which
chunks a client removes from its cache when space is needed.

1) Local: Replacement in a participant’s local portion of
the cache is decided exclusively based solely on local
state.

2) Global: Replacement in a participants local portion of
the cache is decided based on the full state of the system.
However, dissemination of the full system state may not
be practical.

3) Hybrid: The replacement in a participants portion of
the cache is a multi-criteria decision based on full
knowledge of local state and partial (and potentially
incorrect) knowledge of external state.

The lookup challenge involves determining if and which
client(s) are caching a chunk.

1) Broadcast: All clients broadcast each lookup request
to all participants. All participants caching the requested
chunk respond. In this scheme, there is no central index
of contents.

2) Central Server: There is a central index of contents
stored on a central server, all clients unicast their lookup
request to a central server, this server responds to the
request.

3) Gossip: There is no coherent indexing protocol, instead
clients exchange partial knowledge at each communica-
tion.

V. SIMULATOR

A simulator was implemented to test the validity of the
Sloth-NFS approach. Only initial proof-of-concept experi-
ments have been performed that ignore the cost of lookup.

Average Access Time (ms)

| | |
0 20 40 60 80 100 120
Number of Threads

Fig. 4. Experiment 2 Results

The simulator was implemented using multiple asyn-
chronous threads. Each thread simulates a client system,
asynchronously requesting file chunks. Each of these simulated
accesses proceeds as follows:

1) Select a block to access: A Zipf distribution is used to
randomly select the block to be accessed.

2) Determine access location: Based on global informa-
tion, determine if the chunk will be obtained form the
central server or a client.

3) Update timing data: Aggregate statistics of access
latencies are updated.

4) Update cache directory: Adjust simulator data struc-
tures to reflect the presence of the chunk at the thread
now containing the data. Client caches have a capacity of
one hundred blocks and thus acquisition of a new block
can result in the eviction of the least recently accessed
block within its memory.

Zipf distributions [4],[5] have been observed to approximate
the distribution of file and web accesses in a variety of
contexts [6]. We are simulating a cluster of workstations that
presumably will be performing similar tasks, and thus, in this
initial experiment, an identical distribution is assumed for all
clients.

Figure 4 indicates the average client remote access latency
for systems of various sizes at that request blocks randomly
drawn intervals in the range (0 : 5] seconds on a cooperative
cache with lazy placement and local eviction policy. Requests
satisfied by the central server incur a 20ms delay (roughly
corresponding to a random disk transfer), and requests satisfied
by another client incur a 2ms delay (roughly corresponding to
a round-trip transaction on a local network).

As expected, latency decreases as as new clients are added
due to the increase in available cache. Average Response time
flattened out at approximately 3ms, this represents a large
improvement over what is available from a file server.

VI. PROJECT SUMMARY AND FUTURE WORK

The majority of the work on Sloth-NFS is still to be
done. We will use the simulator to rapidly explore various
combinations of placement, replacement and lookup schemes.

We will also augment the simulator to simulate subtleties
of network and server load.

We also wish to prove or disprove our assumptions in the
simulator. We will gather empirical data about file access
distributions and determine both 1.) whether file accesses
are Zipf distributed and 2.) whether all clients follow the
same distribution or different distributions or have different
distribution parameters.

Finally, we have begun implementation of the prototype sys-
tem as a user mode filesystem, using the usermode filesystem
kit [7] provided as part of the SFS [8] distribution. Our initial
implementation will be with lazy placement, local replacement
and central server lookup. We don’t expect the performance
here to be optimal, but it will provide an easily optimizable
baseline implementation, onto which we can later add DHT
and Gossip lookup functionality.

For this optimization, we need to control the parameters of
our implementation. For this optimization, we cannot directly
apply traditional techniques of optimal control, since we do
not know the exact equations describing the dynamics of a
system: this dynamics depend on the behavior of various users.
It is therefore natural to use intelligent control techniques
which have been explicitly designed for optimization under
uncertainty; see, e.g. [9].

VII. SYNOPSIS

In this paper, we analyzed the administration shortcomings
of current options for distribution of common programs and
operating system installations. We proposed an alternate sys-
tem Sloth-NFS, that will address the shortcomings of network
filesystems to allow them to better serve as the method of
choice to distribute these installations.

We presented the design choices we face and presented
our simulator, which allows us to investigate the options
for theses choices without building full implementations. We
finally presented our plans for further investigation both in the
simulator as well as in a prototype implementation.

REFERENCES

[1] B. Callaghan, B. Pawlowski, and P. Staubach, “NFS version 3 protocol
specification,” Network Working Group, RFC 1813, june 1995.

[2] Y. Xu and B. D. Fleisch, “NFS-cc: tuning NFS for concurrent read
sharing.” IJHPCN, vol. 1, no. 4, pp. 203-213, 2004.

[3] S. Annapureddy, M. J. Freedman, and D. Mazieres, “Shark: scaling file
servers via cooperative caching,” in NSDI'05: Proceedings of the 2nd con-
ference on Symposium on Networked Systems Design & Implementation.
Berkeley, CA, USA: USENIX Association, 2005, pp. 129-142.

[4] B. Mandelbrot, Fractals: Form, Chance and Dimension. San Francisco,
CA USA: WH. Freeman and Company, 1977.

[5] , The Fractal Geometry of Nature. New York, NY USA: WH.
Freeman and Company, 1982.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in INFOCOM, 1999,
pp. 126-134.

[7] D. Mazieres, “A toolkit for user-level file systems,” in USENIX Technical
Conference, Boston, MA, June 2001.

[8] D. Mazires, “Self-certifying file system,” Ph.D. dissertation, May 2000.

[9] H.T. Nguyen, A First Course in Fuzzy and Neural Control. Boca Raton,
FL, USA: CRC Press, Inc., 2002.

	University of Texas at El Paso
	DigitalCommons@UTEP
	4-1-2008

	Sloth-NFS and the Possibility of using Fuzzy Control to Optimize Cache Management
	Ryan C. Spring
	Eric Freudenthal
	Recommended Citation

