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Fast Algorithms for Computing Statistics Under Interval and Fuzzy

Uncertainty, and Their Applications

Gang Xiang and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso

El Paso, TX 79968, USA, {gxiang,vladik}@utep.edu

Abstract

In many engineering applications, we have to combine probabilistic, interval, and fuzzy uncertainty.
For example, in environmental analysis, we observe a pollution level x(t) in a lake at different moments
of time t, and we would like to estimate standard statistical characteristics such as mean, variance,
autocorrelation, correlation with other measurements. In environmental measurements, we often only
measure the values with interval uncertainty. We must therefore modify the existing statistical algorithms
to process such interval data.

In this paper, we provide a brief survey of algorithms for computing various statistics under interval
(and fuzzy) uncertainty and of their applications, including applications to the seismic inverse problem
in geosciences, to chip design in computer engineering, and to radar data processing.

1 Formulation of the Problem

Computing Statistics is Important. In many engineering applications, we are interested in computing
statistics. For example, in environmental analysis, we observe a pollution level x(t) in a lake at different
moments of time t, and we would like to estimate standard statistical characteristics such as mean, variance,
autocorrelation, correlation with other measurements.

For each of these characteristics C, there is an expression C(x1, . . . , xn) that enables us to provide an
estimate for C based on the observed values x1, . . . , xn. For example, a reasonable statistic for estimating

the mean value of a probability distribution is the population average E(x1, . . . , xn) =
1
n
· (x1 + . . . + xn); a

reasonable statistic for estimating the variance V is the population variance V (x1, . . . , xn) =
1
n
·

n∑

i=1

(xi−E)2.

Interval Uncertainty. In environmental measurements, we often only measure the values with interval
uncertainty. For example, if we did not detect any pollution, the pollution value v can be anywhere between
0 and the sensor’s detection limit DL. In other words, the only information that we have about v is that
v belongs to the interval [0, DL]; we have no information about the probability of different values from this
interval.

Another example: to study the effect of a pollutant on the fish, we check on the fish daily; if a fish was
alive on Day 5 but dead on Day 6, then the only information about the lifetime of this fish is that it is
somewhere within the interval [5, 6]; we have no information about the distribution of different values in this
interval.

In non-destructive testing, we look for outliers as indications of possible faults. To detect an outlier,
we must know the mean and standard deviation of the normal values – and these values can often only
be measured with interval uncertainty (see, e.g., [33, 34]). In other words, often, we know the result x̃
of measuring the desired characteristic x, and we know the upper bound ∆ on the absolute value |∆x| of
the measurement error ∆x

def= x̃ − x (this upper bound is provided by the manufacturer of the measuring
instrument), but we have no information about the probability of different values ∆x ∈ [−∆, ∆]. In such
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situations, after the measurement, the only information that we have about the true value x of the measured
quantity is that this value belongs to interval [x̃−∆, x̃ + ∆].

In geophysics, outliers should be identified as possible locations of minerals; the importance of inter-
val uncertainty for such applications was emphasized in [29, 30]. Detecting outliers is also important in
bioinformatics [37].

In bioinformatics and bioengineering applications, we must solve systems of linear equations in which
coefficients come from experts and are only known with interval uncertainty; see, e.g., [43].

In biomedical systems, statistical analysis of the data often leads to improvements in medical recommen-
dations; however, to maintain privacy, we do not want to use the exact values of the patient’s parameters.
Instead, for each parameter, we select fixed values, and for each patient, we only keep the corresponding
range. For example, instead of keeping the exact age, we only record whether the age is between 0 and 10,
10 and 20, 20 and 30, etc. We must then perform statistical analysis based on such interval data; see, e.g.,
[20, 42].

Fuzzy Uncertainty. In addition to measurement results, we often have expert estimates of the desired
quantities. An expert often describes such an estimate by using words from the natural language, like “most
probably, the value of the quantity is between 6 and 7, but it is somewhat possible to have values between 5
and 8”. To formalize this knowledge, it is natural to use fuzzy set theory, a formalism specifically designed
for describing this type of informal (“fuzzy”) knowledge [18, 27].

As a result, for every value xi, we have a fuzzy set µi(xi) which describes the expert’s prior knowledge
about xi: the number µi(xi) describes the expert’s degree of certainty that xi is a possible value of the i-th
quantity.

An alternative user-friendly way to represent a fuzzy set is by using its α-cuts {xi |µi(xi) > α} (or
{xi |µi(xi) ≥ α}). For example, the α-cut corresponding to α = 0 is the set of all the values which are
possible at all, the α-cut corresponding to α = 0.1 is the set of all the values which are possible with degree
of certainty at least 0.1, etc. In these terms, a fuzzy set can be viewed as a nested family of intervals
[xi(α), xi(α)] corresponding to different level α.

Estimating Statistics under Fuzzy Uncertainty: Precise Formulation of the Problem. In gen-
eral, we have fuzzy knowledge µi(xi) about each value xi; we want to find the fuzzy set corresponding
to a given characteristic y = C(x1, . . . , xn). Intuitively, the value y is a reasonable value of the char-
acteristic if y = f(x1, . . . , xn) for some reasonable values xi, i.e., if for some values x1, . . . , xn, x1 is
reasonable, and x2 is reasonable, . . . , and f = f(x1 . . . , xn). If we interpret “and” as min and “for
some” (“or”) as max, then we conclude that the corresponding degree of certainty µ(y) in y is equal to
µ(y) = max{min(µ1(x1), . . . , µn(xn))|C(x1, . . . , xn) = y}.

Reduction to the Case of Interval Uncertainty. It is know that the above formula (called extension
principle) can be reformulated as follows: for each α, the α-cut y(α) of y is equal to the range of possible
values of C(x1, . . . , xn) when xi ∈ xi(α) for all i. Thus, from the computational viewpoint, the problem of
computing the statistical characteristic under fuzzy uncertainty can be reduced to the problem of computing
this characteristic under interval uncertainty.

Estimating Statistics Under Interval Uncertainty: a Problem. In the case of interval uncertainty,
instead of the true values x1, . . . , xn, we only know the intervals x1 = [x1, x1], . . . ,xn = [xn, xn] that contain
the (unknown) true values of the measured quantities. For different values xi ∈ xi, we get, in general,
different values of the corresponding statistical characteristic C(x1, . . . , xn). Since all values xi ∈ xi are
possible, we conclude that all the values C(x1, . . . , xn) corresponding to xi ∈ xi are possible estimates for
the corresponding statistical characteristic. Therefore, for the interval data x1, . . . ,xn, a reasonable estimate
for the corresponding statistical characteristic is the range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.
We must therefore modify the existing statistical algorithms so that they compute, or bound these ranges.
This is the problem that we will be analyzing in this paper.
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This Problem is a Part of a General Problem. The above range estimation problem is a specific
problem related to a combination of interval and probabilistic uncertainty. Such problems – and their
potential applications – have been described, in a general context, in the monographs [23, 38]; for further
developments, see, e.g., [4, 5, 6, 7, 14, 15, 24, 26, 35, 36, 39] and references therein.

2 Analysis of the Problem

Mean. Let us start our discussion with the simplest possible characteristic: the mean. The arithmetic
average E is a monotonically increasing function of each of its n variables x1, . . . , xn, so its smallest possible
value E is attained when each value xi is the smallest possible (xi = xi) and its largest possible value is
attained when xi = xi for all i. In other words, the range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)].

In other words, E =
1
n
· (x1 + . . . + xn) and E =

1
n
· (x1 + . . . + xn).

Variance: Computing the Exact Range is Difficult. Another widely used statistic is the variance.
In contrast to the mean, the dependence of the variance V on xi is not monotonic, so the above simple
idea does not work. Rather surprisingly, it turns out that the problem of computing the exact range for
the variance over interval data is, in general, NP-hard which means, crudely speaking, that the worst-case
computation time grows exponentially with n. Moreover, if we want to compute the variance range with a
given accuracy ε, the problem is still NP-hard. (For a more detailed description of NP-hardness in relation
to interval uncertainty, see, e.g., [19].)

Linearization. From the practical viewpoint, often, we may not need the exact range, we can often use
approximate linearization techniques. For example, when the uncertainty comes from measurement errors
∆xi, and these errors are small, we can ignore terms that are quadratic (and of higher order) in ∆xi and
get reasonable estimates for the corresponding statistical characteristics. In general, in order to estimate
the range of the statistic C(x1, . . . , xn) on the intervals [x1, x1], . . . , [xn, xn], we expand the function C

in Taylor series at the midpoint x̃i
def= (xi + xi)/2 and keep only linear terms in this expansion. As a

result, we replace the original statistic with its linearized version Clin(x1, . . . , xn) = C0 −
n∑

i=1

Ci ·∆xi, where

C0
def= C(x̃1, . . . , x̃n), Ci

def=
∂C

∂xi
(x̃1, . . . , x̃n), and ∆xi

def= x̃i−xi. For each i, when xi ∈ [xi, xi], the difference

∆xi can take all possible values from −∆i to ∆i, where ∆i
def= (xi−xi)/2. Thus, in the linear approximation,

we can estimate the range of the characteristic C as [C0 −∆, C0 + ∆], where ∆ def=
n∑

i=1

|Ci| ·∆i.

Linearization is Not Always Acceptable. In some cases, linearized estimates are not sufficient: the
intervals may be wide so that quadratic terms can no longer be ignored, and/or we may be in a situation
where we want to guarantee that, e.g., the variance does not exceed a certain required threshold. In such
situations, we need to get the exact range – or at least an enclosure for the exact range.

Since, even for as simple a characteristic as variance, the problem of computing its exact range is NP-
hard, we cannot have a feasible-time algorithm that always computes the exact range of these characteristics.
Therefore, we must look for the reasonable classes of problems for which such algorithms are possible. Let
us analyze what such classes can be.

For this Problem, Traditional Interval Methods Sometimes Lead to Excess Width. Let us show
that for this problem, traditional interval methods sometimes lead to excess width.

Historically the first method for computing the enclosure for the range is the method which is sometimes
called “straightforward” interval computations. This method is based on the fact that inside the computer,
every algorithm consists of elementary operations (arithmetic operations, min, max, etc.). For each elemen-
tary operation f(a, b), if we know the intervals a and b for a and b, we can compute the exact range f(a,b).
The corresponding formulas form the so-called interval arithmetic. In straightforward interval computations,

3



we repeat the computations forming the program f step-by-step, replacing each operation with real numbers
by the corresponding operation of interval arithmetic. It is known that, as a result, we get an enclosure for
the desired range.

For the problem of computing the range of finite population average, as we have mentioned, straightfor-
ward interval computations lead to exact bounds. The reason: in the above formula for E, each interval
variable only occurs once [17].

For the problem of computing the range of finite population variance, the situation is somewhat more
difficult, because in the expression for the variance, each variable xi occurs several times: explicitly, in
(xi − E)2, and explicitly, in the expression for E. In this cases, often, dependence between intermediate
computation results leads to excess width of the results of straightforward interval computations. Not
surprisingly, we do get excess width when applying straightforward interval computations to the above
formula.

A better range is often provided by a centered form, in which a range f(x1, . . . ,xn) of a smooth function

on a box x1× . . .×xn is estimated as f(x1, . . . ,xn) ⊆ f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
(x1, . . . ,xn) · [−∆i, ∆i], where

x̃i = (xi + xi)/2 is the interval’s midpoint and ∆i = (xi− xi)/2 is its half-width. However, this formula also
leads to excess width.

For this Problem, Traditional Optimization Methods Sometimes Require Unreasonably Long
Time. A natural way to solve the problem of computing the exact range [V , V ] of the finite population
variance is to solve it as a constrained optimization problem. Specifically, to find V , we must find the
minimum of the function (1.1) under the conditions x1 ≤ x1 ≤ x1, . . . , xn ≤ xn ≤ xn. Similarly, to find V ,
we must find the maximum of the function (1.1) under the same conditions.

There exist optimization techniques that lead to computing “sharp” (exact) values of min(f(x)) and
max(f(x)). However, the behavior of such general constrained optimization algorithms is not easily pre-
dictable, and can, in general, be exponential in n.

For small n, this is quite doable, but for large n, the exponential computation time grows so fast that for
reasonable n, it becomes unrealistically large: e.g., for n ≈ 300, it becomes larger than the lifetime of the
Universe.

We Need New Methods. Summarizing: the existing methods are either not always efficient, or do not
always provide us with sharp estimates for V and V . So, we need new methods.

3 Reasonable Classes of Problems for Which We Can Expect Fea-
sible Algorithms for Statistics of Interval Data

Narrow Intervals. The true values x1, . . . , xn of the measured quantity are real numbers, so they are
usually different. The data intervals xi contain these values. When the intervals xi surrounding the corre-
sponding points xi are narrow, these intervals do not intersect. Thus, the ideal case of “narrow intervals”
can be described as the case when no two intervals xi intersect.

Slightly Wider Intervals. Slightly wider intervals correspond to the situation when few intervals inter-
sect, i.e., when for some integer K, no set of K intervals has a common intersection.

Single Measuring Instrument. Since we want to find the exact range C of a statistic C, it is important
not only that intervals are relatively narrow, it is also important that they are approximately of the same
size: otherwise, if, say, ∆x2

i is of the same order as ∆xj , we cannot meaningfully ignore ∆x2
i and retain ∆xj .

In other words, the interval data set should not combine high-accurate measurement results (with narrow
intervals) and low-accurate results (with wide intervals): all measurements should have been done by a single
measuring instrument (or at least by several measuring instruments of the same type).
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A clear indication that we have two measuring instruments (MI) of different quality is that one interval
is a proper subset of the other one: [xi, xi] ⊆ (xj , xj). We therefore say that a collection of intervals satisfies
a subset property if [xi, xi] 6⊆ (xj , xj) for all i and j for which the intervals xi and xj are non-degenerate.

Several MI. A natural next case is when we have several MI, i.e., when our intervals are divided into
several subgroups each of which has the above-described subset property.

Privacy Case. Although these definitions are in terms of measurements, they make sense for other sources
of interval data as well. For example, for privacy data, intervals either coincide (if the value corresponding
to the two patients belongs to the same range) or are different, in which case they can only intersect in
one point. Similarly to the above situation, we also allow exact values in addition to ranges; these values
correspond, e.g., to the exact records made in the past, records that are already in the public domain.

We will call interval data with this property – that every two non-degenerate intervals either coincide or
intersect at most in one point – privacy case. Such intervals satisfy the subset property.

Non-Detects. Similarly, if the only source of interval uncertainty is detection limits, i.e., if every mea-
surement result is either an exact value or a non-detect, i.e., an interval [0, DLi] for some real number DLi

(with possibly different detection limits for different sensors), then the resulting non-degenerate intervals
also satisfy the subset property.

4 Algorithms

Let us now describe algorithms for computing statistical characteristics under interval uncertainty [10, 11,
21, 22, 40].

Variance: Lower Bound. The lower bound V can be always computed in time O(n · log(n)).
The algorithm for computing V is based on the fact that when a function V attains a minimum on an

interval [xi, xi], then either
∂V

∂xi
= 0, or the minimum is attained at the left endpoint xi = xi – then

∂V

∂xi
> 0,

or the minimum is attained at the right endpoint xi = xi and
∂V

∂xi
< 0. Since the partial derivative is equal

to (2/n) · (xi−E), we conclude that either xi = E, or xi = xi > E, or xi = xi < E. Thus, if we know where
E is located in relation to all the endpoints, we can uniquely determine the corresponding minimizing value
xi for every i: if xi ≤ E then xi = xi; if xi ≤ xi, then xi = xi; otherwise, xi = E. The corresponding value
E can be found from the condition that E is the average of all the selected values xi.

So, to find the smallest value of V , we can sort all 2n bounds xi, xi into a sequence x(1) ≤ x(2) ≤ . . .;
then, for each zone [x(k), x(k+1)], we compute the corresponding values xi, find their variance Vk, and then
compute the smallest of these variances Vk.

As we have mentioned, the corresponding value E can be found from the condition that E is the average
of all the selected values xi. If E is in the zone [x(k), x(k+1)], then we know all the values xi, so n ·E should
be equal to the sum of these values: n · E =

∑
i:xi≥x(k+1)

xi + (n − Nk) · E +
∑

j:xj≤x(k)

xj , where by Nk, we

denoted the total number of such i’s for which xi ≥ x(k+1) and j’s for which xj ≤ x(k).

Subtracting (n − Nk) · E from both sides of this equality, we conclude that Nk · E = Sk, where Sk
def=∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj . If Nk = 0, this means that xi = E for all i, so V = 0. If Nk 6= 0, then E = Sk/Nk.

Once E is computed, we can now compute the corresponding variance Vk as Mk − E2, where Mk is the

second population moment: Mk =
1
n
·

∑

i:xi≥x(k+1)

(xi)
2+

n−Nk

n
·E2+

1
n
·

∑

j:xj≤x(k)

(xj)2, i.e., Vk = M ′
k−

Nk

n
·E2,

where M ′
k

def=
1
n
·

 ∑

i:xi≥x(k+1)

(xi)
2 +

∑

j:xj≤x(k)

(xj)2


 .
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Sorting requires O(n · log(n)) steps [9]. Computing the initial values of Sk, Nk, and M ′
k requires linear

time, i.e., O(n) steps.
For each k, the values Sk, Nk, and M ′

k differ from the previous value by only one or two terms – namely,
e.g., the values i for which xi ≥ x(k) but xi < x(k+1). In other words, the only change is for i for which
x(k) ≤ xi < x(k+1). Since x(k) is the ordering of all lower and upper bounds, this means that x(k) = xi.

Similarly, the only change in the second sum is the term for which xj = x(k).
So, each of these values Sk, . . . , can be computed from the previous values Sk−1, . . . in a constant number

of steps. Thus, the overall number of steps for computing them is linear in n. The smallest of the values Vk

is the desired V . Thus, we can compute V in O(n · log(n)) + O(n) = O(n · log(n)) steps.
In [41], we developed a faster O(n) algorithm. Its main idea is using a linear-time algorithm for computing

the median [9] instead of an O(n · log(n)) algorithm for sorting the list.

Variance: Upper Bound. We have already mentioned that computing V is, in general, an NP-hard
problem. It is known that the maximum of a convex quadratic function on an interval is always attained at
one of the endpoints. Thus, V is attained when xi = xi or xi = xi for each i.

In the case of subset property, we can sort the intervals in lexicographic order: xi ≤ xj if and only if
xi < xj or (xi = xj and xi ≤ xj). If we replace two values in such a way that their sum (and hence,
the overall average) remain unchanged, then the maximum V cannot increase. We can thus show that the
maximum is attained at one of the vectors x(k) = (x1, . . . , xk, xk+1, . . . , xn). When we go from a vector x(k)

to the vector x(k+1), only one term changes in the vector x, so only one term changes in each of the sums E
and M ; thus, we need O(n · log(n)) time for sorting and O(n) time for computing all V (x(k)) – the total of
O(n · log(n)). A linear time algorithm is presented in [41].

4.1 Case of Several MI

In case of several MI, it can be similarly proven that if we sort the intervals corresponding to each MI in
lexicographic order, then the maximum of V is attained when from intervals corresponding to each MI, the
values xi corresponding to this MI form a sequence (x1, . . . , xkj

, xkj+1, . . . , xnj ), where nj is the total number
of intervals corresponding to the j-th MI.

Thus, to find the maximum of V , we must find the values k1, . . . , km corresponding to m MIs. For these
values, V = M − E2, where M =

∑
Mj and E =

∑
Ej , where we denoted by Ej and Mj , the averages of,

correspondingly, xi and x2
i , taken by using only results of j-th MI.

For each MI j, we can compute all nj + 1 possible values Ej and Mj in linear time.
There are ≤ nm combinations of kis; for each combination, we need m additions to compute E =

∑
Ej ,

m additions to compute M =
∑

Mj , and a constant number of operations to compute V = M −E2. Thus,
overall, we need time O(nm).

Cases of Privacy and Non-Detects. Since these two cases are a particular case of the subset property
case, any algorithm developed for the subset property case can be applied to these two cases as well.

Other Statistical Characteristics. Similar algorithms are known for covariance, moments, and combi-
nations E ± k0 ·

√
V which are important for detecting outliers.

5 Applications

Seismic Inverse Problem. Our civilization greatly depends on the things we extract from the Earth, such
as fossil fuels (oil, coal, natural gas), minerals, and water. To be able to distinguish between more promising
and less promising locations, it is desirable to determine the structure of the Earth at these locations. To
be more precise, we want to know the structure at different depths z at different locations (x, y). In general,
to determine the Earth structure, we can use different measurement results that can be obtained without
actually drilling the boreholes: e.g., gravity and magnetic measurements, analyzing the travel-times and
paths of seismic ways as they propagate through the earth, etc.
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To get a better understanding of the Earth structure, we must rely on active seismic data – in other
words, we must make artificial explosions, place sensors around them, and measure how the resulting seismic
waves propagate. The most important information about the seismic wave is the travel-time ti, i.e., the time
that it takes for the wave to travel from its source to the sensor. to determine the geophysical structure of a
region, we measure seismic travel times and reconstruct velocities at different depths from these data. The
problem of reconstructing this structure is called the seismic inverse problem.

Once we know the velocities vj in each cell j, we can then determine the paths which seismic waves take.
Seismic waves travel along the shortest path – shortest in terms of time. It can be easily determined that
for such paths, within each cell, the path is a straight line, and on the border between the two cells with

velocities v and v′, the direction of the path changes in accordance with Snell’s law
sin(ϕ)

v
=

sin(ϕ′)
v′

, where

ϕ and ϕ′ are the angles between the paths and the line orthogonal to the border between the cells. (If this
formula requires sin(ϕ′) > 1, this means that this wave cannot penetrate into the neighboring cell at all;
instead, it bounces back into the original cell with the same angle ϕ.)

In particular, we can thus determine the paths from the source to each sensor. The travel-time ti along
i-th path can then be determined as the sum of travel-times in different cells j through which this path

passes: ti =
∑
j

`ij

vj
, where `ij denotes the length of the part of i-th path within cell j.

There are several algorithms for solving this system of non-linear equations; the most widely used is the
following iterative algorithm proposed by John Hole [16].

However, often, the velocity model that is returned by the existing algorithm is not geophysically mean-
ingful: e.g., it predicts velocities outside of the range of reasonable velocities at this depth. To avoid such
situations, it is desirable to incorporate the expert knowledge into the algorithm for solving the inverse
problem.

There are two types of such knowledge. First, for each cell j, a geophysicist often provides us with his
or her estimate of possible values of the corresponding velocity vj . Sometimes, this estimates comes in the
form of an interval [vj , vj ] that is guaranteed to contain the (unknown) actual value of slowness. In other
cases, it comes in terms of a fuzzy estimate. Such fuzzy prior information can lead to more accurate velocity
models; see, e.g., [2, 3, 13, 28].

Second, prior information often comes from processing previous observations of the region of interest.
In this case, before our experiments, for each cell j, we know a prior (approximate) velocity value ṽj , and
we know the accuracy (standard deviation) σj of this approximate value ṽj . It is known that this prior
information can lead to much more accurate velocity models; see, e.g., [25].

In [2], we show how we can modify Hole’s algorithm to take into account both interval (fuzzy) and
probabilistic uncertainty – e.g., to make sure that the velocities vj stay within the corresponding intervals.

Chip Design. In chip design, one of the main objectives is to decrease its clock cycle. On the design
stage, this time is usually estimated by using worst-case (interval) techniques, in which we only use the
bounds on the parameters that lead to delays. This analysis does not take into account that the probability
of the worst-case values is usually very small; thus, the resulting estimates are over-conservative, leading to
unnecessary over-design and under-performance of circuits. If we knew the exact probability distributions of
the corresponding parameters, then we could use Monte-Carlo simulations (or the corresponding analytical
techniques) to get the desired estimates. In practice, however, we only have partial information about the
corresponding distributions, and we want to produce estimates that are valid for all distributions which are
consistent with this information.

In [31, 32], we describe a general technique that allows us, in particular, to provide such estimates for
the clock time.

Radar Data Processing [1, 12] A radar observes the result of a space explosion. Due to radar’s low
horizontal resolution, we get a 1-D signal x(t) representing different 2-D slices. Based on these slices, we
must distinguish between the body at the core of the explosion and the slowly out-moving fragments.

In [12], we describe new algorithms for processing this 1-D data. Since these algorithms are time-
consuming, we also exploit the possibility of parallelizing these algorithms.
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The shape of the radar signal can provide us with the additional information about the reflecting surface.
However, to decrease the noise, radars use filtering, and filtering changes the shapes of the radar signal. It
is therefore necessary to reconstruct the original shape of the radar signal. Corresponding algorithms are
described in [1].

Halftoning in Image Processing. Inside the computer, a gray-scale image is represented by assigning,
to every pixel (n1, n2), the intensity f(n1, n2) of the color at this pixel. For color images, we must represent
the intensity of each color component.

A laser printer cannot print the points of different intensity; at any pixel, it either prints a black (or a
colored) dot, or it does not print anything at all. Therefore, when we print an image, we must first transform
it into the form b(n1, n2) in which at every pixel (n1, n2), we only have 0 or 1: 0 if we do not print a black
dot at this location, and 1 if we do. This transformation from the original continuous image to the two-level
(“halftone”) image is called halftoning.

Crudely speaking, the level of intensity at a pixel is represented by the relative frequency of black spots
around it:

Once we have a printed image, we can digitally scan it and get the halftone values b(n1, n2) from this
printed page. From these halftone values, we would like to reconstruct the original image. Our eyes can do
it, but it is not so easy to describe this ability in algorithmic terms.

The need for such a representation also comes from the need to manipulate the original image, e.g.,
rotate it or zoom on it. These operations are easy to perform on the original image, but it is not clear how
to directly perform them on a halftone image. Instead, we reconstruct the original image, rotate it, and
halftone the rotated image.

There exist inverse halftoning methods, but these methods are still far from optimal.
The problem is that halftoning loses information and is, therefore, a lossy compression. Hence, there

may be several different images that lead to the same halftoned image. In the existing methods, we reverse
the halftoning procedure by selecting one of such images. However, it may be beneficial to present not just
a single possible original image, but the whole range of images that could lead to the given halftoned image.
Thus, instead of the image in which the intensity f(n1, n2) at every pixel has an exact value, we come up with
an “interval-valued” image in which, at each pixel (n1, n2), we only know the interval [f(n1, n2), f(n1, n2)]
of possible values of intensity; this idea was explored in [8].
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