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Abstract

In many problems in science and engineering ranging from astrophysics
to geosciences to financial analysis, we know that a physical quantity y
depends on the physical quantity x, i.e., y = f(x) for some function f(x),
and we want to check whether this dependence is monotonic. Specifically,
finitely many measurements of xi and yi = f(xi) have been made, and we
want to check whether the results of these measurements are consistent
with the monotonicity of f(x). An efficient parallelizable algorithm is
known for solving this problem when the values xi are known precisely,
while the values yi are known with interval uncertainty. In this paper,
we extend this algorithm to a more general (and more realistic) situation
when both xi and yi are known with interval uncertainty.

1 Formulation of the Problem

Related problems – of checking monotonicity and locating local ex-
trema – are important. In many problems in science and engineering,
we know that a physical quantity y depends on the physical quantity x, i.e.,
y = f(x) for some function f(x), and we want to check whether this depen-
dence is monotonic.

In spectral analysis, chemical species are identified by locating local maxima
of the spectra; see, e.g., [30, 31, 32]. Thus, to identify the chemical species, we
must identify intervals between local extrema, i.e., intervals of monotonicity.

In radioastronomy, sources of celestial radio emission and their subcompo-
nents are identified by locating local maxima of the measured brightness of the
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radio sky. In other words, we are interested in the local maxima of the brightness
distribution, i.e., of the function y(x) that describes how the intensity y of the
signal depends on the position x of the point from which we receive this signal.
Thus, in radioastronomy, we must also identify the intervals of monotonicity.

Elementary particles are identified by locating local maxima of the experi-
mental curves that describe (crudely speaking) the scattering intensity y as a
function of energy x. Thus, in elementary particle physics, finding intervals of
monotonicity is also important.

In 1-D landscape analysis, e.g., different mountain slopes are different mono-
tonicity intervals; see, e.g., [1, 2, 5, 6].

In financial analysis, it is also important to find intervals of monotonicity
because they correspond to growth or decline periods; see, e.g., [8, 9]

In clustering, different 1-D clusters correspond to a multi-modal distribution,
so clusters can be naturally described as combinations of monotonicity intervals
separating local minima of the probability density function; see, e.g., [21, 27, 28].

Local maxima and minima are also used in the methods that accelerate the
convergence of the measurement result to the real value of a physical variable,
and thus allow the user to estimate this value without waiting for the oscillations
to stop [26]. Thus, to accelerate convergence, we must also be able to efficiently
find intervals of monotonicity.

Checking monotonicity is a reasonable approach to locating local ex-
trema. In almost all these application domains, the problem is that of finding
the local maxima and minima of a function. There are several other well-known
techniques to solve this problem, techniques that do not rely on checking mono-
tonicity.

For example, there exist successful semi-heuristic several numerical methods
of locating extrema (see, e.g., [16, 23, 30, 31]), semi-heuristic in the sense that
they do not provide the user with any guaranteed estimates of the accuracy of
their results.

There also exist various guaranteed algorithms that locate the global maxima
of an intervally defined function (see, e.g., [10, 18, 24, 25, 29]). However, the
input for these methods is very different: namely, an expression for the function.
Besides, for these algorithms, local maxima are the main obstacle that has to be
overcome (and not the desired result); see, e.g., [13, 14, 15, 18]. For these two
reasons, we cannot always apply these algorithms to locate all local maxima –
so methods based on checking monotonicity are very useful.

Even when we can apply the interval optimization techniques, methods based
on checking monotonicity are, in general, faster. Indeed, the computational
complexity of the traditional interval optimization techniques increases when
we want higher accuracy, i.e., when we decrease the accuracy ε > 0 with which
we need to find the location of the extrema. On the other hand, methods based
on monotonicity checking depends only on the number of measurements n; they
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produce exact results and therefore, their computational complexity does not
grow when ε decreases; see, e.g., [33]. Thus, for sufficiently small ε, methods
based on checking monotonicity are faster.

We can never guarantee monotonicity, so we should check whether
it is possible that the actual dependence is monotonic. In many real-
life situations, we do not know the exact shape of the function f(x). Instead,
we know the results of measuring x and y in several situations. Based on
these measurement results, we want to check whether it is possible that the
dependence f(x) is monotonic.

Of course, we can only make finitely many measurements. Even in the
ideal case when all the measurements are absolutely precise, i.e., when for each
measurement i (1 ≤ i ≤ n), we know the exact value xi of the quantity x and
the exact value yi of the quantity y, all we know about the function f(x) is
that f(xi) = yi for all i from 1 to n. As a result, we have no information about
the values of f(x) for x 6= xi. In principle, it is quite possible that the actual
function is not monotonic: if it goes up and then down between the next two
values of xi, we will never notice it based on the n measurement results.

In short, based on the measurement results, we can never guarantee that
the actual function f(x) is monotonic. What we can do is check whether it
is possible that the function f(x) is monotonic, i.e., whether there exists a
monotonic function f(x) that is consistent with all the measurement results.

In this paper, we will illustrate our algorithms on the example of in-
creasing functions. As we have just argued, given the measurement results,
it is important to check two things:

• it is important to check whether the measurement results are consistent
with the assumption that the function f(x) is (non-strictly) increasing –
i.e., x < x′ implies f(x) ≤ f(x′);

• it is also important to check whether the measurement results are consis-
tent with the assumption that the function f(x) is (non-strictly) decreasing
– i.e., x < x′ implies f(x) ≥ f(x′).

In the following text, we will only describe algorithms for checking whether
given measurements are consistent with the assumption that the function f(x)
is increasing. Because of this restriction, in the following sections, “monotonic”
will mean increasing.

These algorithms can be easily modified to check for decreasing dependences.
Alternatively, to check whether the dependence between x and y is decreasing,
we can replace the original data (xi, yi) with the new data (xi,−yi), and check
whether the resulting dependence of −y on x is increasing.
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2 What Is Known

Before we describe our result, let us describe what is already known about this
problem.

Simplest case: exact measurements. Let us first consider the simplest
case when the measurement errors are negligible, so we can safely assume that
we know all the values x1, . . . , xn and y1, . . . , yn exactly. In this case, we want
to check whether there exists a monotonic function f(x) for which f(xi) = yi

for all i from 1 to n.
In this case, if such a monotonic function exists, then, by definition of mono-

tonicity, for all i and j for which xi < xj , we have f(xi) ≤ f(xj), therefore,
yi ≤ yj .

Vice versa, let us assume that for all i and j, xi < xj implies yi ≤ yj . In this
case, we can find a monotonic function f(x) for which f(xi) = yi. To construct
such a function f(x), first, we sort the values xi into an increasing sequence
x(1) < x(2) < . . . < x(n). Due to our assumed property, the corresponding
values of y are also sorted: y(1) ≤ y(2) ≤ . . . ≤ y(n). We can then design a piece-
wise linear function that goes through all the points (x(i), y(i)): this function is
equal:

• to y(1) for x ≤ x(1),

• to
y(i) + (x− x(i)) ·

y(i+1) − y(i)

x(i+1) − x(i)

for x(i) ≤ x ≤ x(i+1), and

• to y(n) for x ≥ x(n).

This function is monotonic.
Thus, in this simple case, the existence of a monotonic function that is

consistent with all the measurements is equivalent to the following property:

For every i and j, if xi < xj , then yi ≤ yj . (1)
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Simplest case: computational complexity. How difficult is it to check
this property? If we simply check this property for all i = 1, . . . , n and all
j = 1, . . . , n, then checking this property would require O(n2) comparisons –
i.e., O(n2) computational steps.

We can check this property faster if, instead, we first sort the values xi into
an increasing sequence x(1) < x(2) < . . . < x(n) – this requires O(n·log(n)) steps
[7] – and then, for every i from 1 to n − 1, check whether y(i) ≤ y(i+1) (this
requires O(n) steps). Overall, we thus need O(n · log(n))+O(n) = O(n · log(n))
steps.

Second case: x is measured exactly, y is known with uncertainty. Let
us now consider a more realistic case when we can ignore the measurement error
in measuring x but not the measurement error in measuring y. In this case, for
each i, the measured value ỹi may be different from the actual value yi of the
measured quantity; in other words, there can be a non-zero measurement error
∆yi

def= ỹi − yi.
The manufacturer of a measuring instrument usually provides us with the

upper bound ∆i on the (absolute value of the) measurement error. So, based
on the measurement result ỹi, the only thing that we can conclude about the
actual (unknown) value yi of the measured quantity is that this value belongs
to the interval [y

i
, yi], where y

i

def= ỹi −∆i and yi
def= ỹi + ∆i.

In this case, we know n values x1, x2, . . . , xn and we know n intervals
[y

1
, y1], [y2

, y2], . . . , [yn
, yn]. We want to check whether there exists a mono-

tonic function f(x) that is consistent with all these measurement results, i.e.,
for which f(x1) ∈ [y

1
, y1], f(x2) ∈ [y

2
, y2], . . .
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This problem was solved in [33]. Let us describe the algorithm and its
motivations. This solution is based on the following result proven in [33]: The
existence of a monotonic function that is consistent with all the measurements
is equivalent to the following property:

For every i and j, if xi < xj , then y
i
≤ yj . (2)

Let us show how, when this property is true, we can construct a monotonic
function f(x) that is consistent with all the measurement results, i.e., for which
f(xi) ∈ [y

i
, yi] for all i.

• First, similarly to the previous case, we can sort the values xi in increasing
order. So, without losing generality, we can assume that the values xi are
already sorted, i.e., that x1 ≤ x2 ≤ . . . ≤ xn.

• Then, for every i, we define f(xi)
def= max(y

1
, y

2
, . . . , y

i
).

• Finally, similarly to the above case, we use linear extrapolation and inter-
polation to define the values of f(x) for all other x.

Case when x is measured exactly and y is known with uncertainty:
computational complexity. How difficult is it to check the above property?
If we simply check this property for all i = 1, . . . , n and all j = 1, . . . , n, then
checking this property would require O(n2) comparisons – i.e., O(n2) computa-
tional steps.

We can check this property faster if we use the fact that for sorted xi (x1 <
x2 < . . . < xn), the above property is equivalent to the following auxiliary
property (motivated by the above construction):

For every i, we have max(y
1
, y

2
, . . . , y

i
) ≤ yi. (3)
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Indeed, we have already proven that if the above property (2) is true, then this
auxiliary property (3) is true as well. Vice versa, if the property (3) is true,
then for every k < i, we have y

k
≤ max(y

1
, y

2
, . . . , y

i
) ≤ yi hence y

k
≤ yi.

So, in this case, to check the existence of a monotonic function that is con-
sistent with all the measurement results, we can perform the following three
stages:

• First, we sort the values xi into an increasing sequence

x(1) < x(2) < . . . < x(n)

– this requires O(n · log(n)) steps.

• Then, for every i from 1 to n, we compute the value f(xi) =
max(y

1
, y

2
, . . . , y

i
). If we already know f(xi), then we can compute the

next value f(xi+1) by using a single operation f(xi+1) = max(f(xi), yi+1
).

Thus, computing all n values requires n computational steps.

• Finally, for every i from 1 to n, we compare the value f(xi) computed
on Stage 2 with the value yi, to check the inequality (3). Each checking
requires one comparison, so to check that this inequality holds for all i
from 1 to n, we need n comparisons.

Overall, we thus need O(n · log(n)) + O(n) + O(n) = O(n · log(n)) steps.

3 General Case: Formulation of the Problem

Let us now consider the general case, when neither the measurement error x
nor the measurement error in y can be ignored. In this case, both x and y are
known with interval uncertainty, and we have the following problem.

Definition 1. By a measurement result, we mean a pair of intervals
〈[x, x], [y, y]〉.

Definition 2. By measurement data, we mean a finite sequence of measure-
ment results, i.e., a sequence

(〈[x1, x1], [y1
, y1]〉, 〈[x2, x2], [y2

, y2]〉, . . . , 〈[xn, xn], [y
n
, yn]〉).

Definition 3. We say that a function f(x) is consistent with the measurement
result 〈[x, x], [y, y]〉 if there exists a value x ∈ [x, x] for which f(x) ∈ [y, y].

Definition 4. We say that a function f(x) is consistent with the measurement
data if it is consistent with all the measurement results that form this data.
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The main problem is, given n measurement results, to check whether there
exists a monotonic function f(x) that is consistent with all these measurement
results. In other words, we want to check whether it is possible to have a
monotonic function f(x) and values xi ∈ [xi, xi] for which yi

def= f(xi) ∈ [y
i
, yi].

Comment. In our formulation, we know that f(xi) ∈ [y
i
, yi] for some xi ∈

[xi, xi]. In some practical situations, we have a different problem: we know
that f(xi) ∈ [y

i
, yi] for all xi ∈ [xi, xi]. For this different problem, an efficient

algorithm for checking monotonicity was described in [22].

4 General Case: Main Result

Preliminary analysis of the problem: case when a function cannot
be monotonic. In order to come up with a good criterion for checking mono-
tonicity, let us describe a case when it is impossible to have a monotonic function
consistent with all the measured data. Namely, if there exist i and j for which
xi ≤ xj and y

i
> yj , then, as we will show, such a monotonic function is

impossible.
Indeed, according to our definitions, the existence of a monotonic function

f(x) consistent with all the measurements would mean that there exist values
xi ∈ [xi, xi] and xj ∈ [xj , xj ] for which f(xi) ∈ [y

i
, yi] and f(xj) ∈ [y

j
, yj ].

Since xi ∈ [xi, xi], we have xi ≤ xi, and similarly, xj ≤ xj . Therefore, we have
xi ≤ xi ≤ xj ≤ xj , hence xi ≤ xj . Due to monotonicity, we must therefore
have f(xi) ≤ f(xj). However, from f(xi) ≥ y

i
> yj ≥ f(xj), we conclude that

f(xi) > f(xj) – a contradiction. This contradiction shows that in this case, it
is impossible to have a consistent monotonic function.

We will now show that this is the only case when it is impossible to have a
monotonic function that is consistent with the measurement results. In other
words, we will show, that if for every i and j for which xi ≤ xj , we have y

i
≤ yj

(so that y
i

> yj is impossible), then there exists a monotonic function that is
consistent with all the measurement results.

Theorem. For every measurement data

(〈[x1, x1], [y1
, y1]〉, 〈[x2, x2], [y2

, y2]〉, . . . , 〈[xn, xn], [y
n
, yn]〉),

the existence of the monotonic function that is consistent with the measurement
data is equivalent to the following condition:

For every i and j, if xi ≤ xj , then y
i
≤ yj . (4)
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Discussion. The inequality xi ≤ xj means that no matter what the values
xi and xj are within the corresponding intervals [xi, xi] and [xj , xj ], we always
have xi ≤ xj . In other words, based on the measurement data, we can guarantee
that necessarily xi ≤ xj .

There is an area of logic called modal logic that deals with statements of the
type “necessarily A” or “possibly A”. In modal logic, “necessarily A” is usually
denoted as 2A. So, the condition “necessarily xi ≤ xj” (that is equivalent to
xi ≤ xj) can be reformulated as 2(xi ≤ xj); see, e.g., [4, 11, 12, 19].

Similarly, the condition y
i
≤ yj means that it is possible to have yi ≤ yj ,

i.e., that there exist values yi ∈ [y
i
, yi] and yj ∈ [y

j
, yj ] for which yi ≤ yj . In

modal logic notation, “possible” is denoted by ♦, so “possibly yi ≤ yj” can be
denoted as ♦(yi ≤ yj).

Indeed, all we know about the (unknown) actual value yi of the quantity y
measured in i-th measurement is that yi ∈ [y

i
, yi], i.e., y

i
≤ yi ≤ yi. Similarly,

all we know about the (unknown) actual value yj of the quantity y measured in
j-th measurement is that yj ∈ [y

j
, yj ], i.e., y

j
≤ yj ≤ yj .

• If it is possible that yi ≤ yj , i.e., if yi ≤ yj for some yi ∈ [y
i
, yi] and

yj ∈ [y
j
, yj ] for which yi ≤ yj , then, due to y

i
≤ yi and yj ≤ yj , we have

y
i
≤ yi ≤ yj ≤ yj , hence y

i
≤ yj .

• Vice versa, if y
i
≤ yj , then the inequality yi ≤ yj holds for yi = y

i
∈ [y

i
, yj ]

and yj = yj ∈ [y
j
, yj ]. Therefore, in this case, it is indeed possible to have

yi ≤ yj .

So, the inequality y
i
≤ yj is equivalent to ♦(yi ≤ yj).

We have shown that the inequality xi ≤ xj can be rewritten as 2(xi ≤ xj),
and that the inequality y

i
≤ yj can be rewritten as ♦(yi ≤ yj). Thus, the

condition (4) can be reformulated as follows:

For every i and j, if 2(xi ≤ xj), then ♦(yi ≤ yj). (5)

Proof. 1◦. We have already shown that if the condition (4) is not satis-
fied, then we cannot have a monotonic function that is consistent with all the
measurement results. Thus, to complete the proof, we must show that if the
condition (4) is satisfied, then there exists a monotonic function f(x) that is
consistent with all the measurement results.

In this proof, we will therefore assume that the condition (4) is satisfied, and
we will construct the desired monotonic function f(x).

2◦. Let us show that we can simplify (specifically, narrow down) some of the x-
and y-intervals without affecting the existence of a monotonic function that is
consistent with all the measurement results, and without changing the condition
(4).
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The corresponding transformations will enable us to reduce the general case
of the theorem to the case when the corresponding x- and y-intervals have
already been simplified.

2.1◦. Let us first show that for each a and b, if xa ≤ xb, then we can replace the
value y

b
with the new value ynew

b
= max(y

a
, y

b
) without affecting the existence

of a monotonic function that is consistent with all the measurement results and
without changing the condition (4).

-

6

0 xa xa xb xb

y
a

yold
b

yb

ya

-

6

0 xa xa xb xb

ynew
b

= y
a

yold
b

yb

ya

2.1.1◦. Let us first show that the new lower endpoint ynew
b

of b-th y-interval is
consistent with the unchanged upper endpoint of this interval, i.e., that ynew

b
≤

yb.
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Indeed, since we assumed that xa ≤ xb, then, due to the condition (4), we
will have y

a
≤ yb. Clearly, we also have y

b
≤ yb. From these two inequalities,

we can conclude that max(y
a
, y

b
) ≤ yb, i.e., that ynew

b
≤ yb.

2.1.2◦. Let us now show that the replacement of the old interval [y
b
, yb] with

the new interval [ynew
b

, yb] does not affect the existence of a monotonic function
that is consistent with all the measurement results.

By definition, ynew
b

= max(y
a
, y

b
) ≥ y

b
, so we replace the lower endpoint y

b
with a value that is either the same or larger. As a result, the new interval for
yb is a subset of the old one: [ynew

b
, yb] ⊆ [y

b
, yb]. All other x- and y-intervals

remain unchanged.
So, if there exists a monotonic function f(x) that is consistent with the new

measurement results, i.e., for which, for some xi ∈ [xi, xi], we have f(xi) ∈
[y

i
, yi] for i 6= b and f(xb) ∈ [ynew

b
, yb], then the value f(xb) belongs to a larger

interval [y
b
, yb] as well, so the same monotonic function is consistent with the

old measurement results.
Vice versa, let us assume that there exists a monotonic function f(x) that

is consistent with the old measurement results, i.e., for which, for some xi ∈
[xi, xi], we have f(xi) ∈ [y

i
, yi] for i 6= b and f(xb) ∈ [y

b
, yb]. In particular,

for xa ∈ [xa, xa] and xb ∈ [xb, xb], we have xa ≤ xa and xb ≤ xb. Since
we assumed that xa ≤ xb, we can therefore conclude that xa ≤ xb. Since the
function f(x) is monotonic, we can therefore conclude that f(xa) ≤ f(xb). Since
f(xa) ∈ [y

a
, ya], we conclude that y

a
≤ f(xa), therefore, from f(xa) ≤ f(xb),

we can deduce that y
a
≤ f(xb).

Similarly, from f(xb) ∈ [y
b
, yb], we can conclude that y

b
≤ f(xb) ≤ yb. Since

f(xb) is not smaller than both y
a

and y
b
, it is therefore not smaller than the

largest of them, i.e., max(y
a
, y

b
) ≤ f(xb) ≤ yb. In other words, we conclude

that f(xb) ∈ [ynew
b

, yb]. So, if the monotonic function f(x) is consistent with the
old measurement results, then the same monotonic function f(x) is consistent
with the new measurement results as well.

These two conclusions show that the replacement of the old interval [y
b
, yb]

with the new interval [ynew
b

, yb] does not indeed affect the existence of a mono-
tonic function that is consistent with all the measurement results.

2.1.3◦. The objective of Part 2.1◦ of this proof is to show that for each a and b, if
xa ≤ xb, then we can replace the value y

b
with the new value ynew

b
= max(y

a
, y

b
)

without affecting the existence of a monotonic function that is consistent with
all the measurement results and without changing the condition (4).

We have already proven that this replacement does not affect the existence
of a monotonic function that is consistent with all the measurements.

To complete the proof of Part 2.1◦, let us now show that the replacement
of the old interval [y

b
, yb] with the new interval [ynew

b
, yb] does not change the

condition (4).

Indeed, we do not change the values xi, xj , and yj , the only change we made
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is the change in y
b
. Therefore, the only particular case of condition (4) that

we need to check is the case when i = b, i.e., when y
i

is the value y
b

that we
change. In other words, assuming that the condition (4) was originally true, we
must prove that this condition (4) still holds for the new value y

b
, i.e., that if

xb ≤ xj , then ynew
b

≤ yj .
By definition, ynew

b
= max(y

a
, y

b
). Since the condition (4) is satisfied for the

original value y
b
, from xb ≤ xj , we conclude that y

b
≤ yj .

Now, the indices a and b are selected in such a way that xa ≤ xb. Since,
for every interval, the lower endpoint cannot exceed the upper endpoint, we
have xb ≤ xb, and we thus conclude that xa ≤ xb. Since xb ≤ xj , we therefore
conclude that xa ≤ xj . Since the condition (4) holds for the original bounds y

i
,

we get y
a
≤ yj .

We have proven that yj is not smaller than both y
a

and y
b
. Thus, yj is

not smaller than the largest of these two values, i.e., max(y
a
, y

b
) ≤ yj . This is

exactly the desired inequality. The statement is proven.

2.2◦. Similarly, we can show that for each a and b, if xa ≤ xb, then we can
replace the value ya with the new value ynew

a = min(ya, yb) without affecting
the existence of a monotonic function that is consistent with all the measurement
results and without changing the condition (4).

-

6

0 xa xa xb xb

y
a

y
b

yb

yold
a
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-

6

0 xa xa xb xb

y
a

y
b

ynew
a = yb

yold
a

Comment. In 2.1◦ and 2.2◦, we described transformations that simplify the
input when xa ≤ xb for some a and b. Let us now show that similar transfor-
mations can be performed when, instead of considering pairs (a, b) for which
xa ≤ xb, we consider pairs for which ya < y

b
.

2.3◦. Let us now show that for each a and b, if ya < y
b
, then we can replace the

value xb with the new value xnew
b = max(xa, xb) without affecting the existence

of a monotonic function that is consistent with all the measurement results and
without changing the condition (4).

6

-
0

y
a

ya

y
b

yb

xaxold
b xb xa
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6

-
0

y
a

ya

y
b

yb

xnew
b = xaxold

b xb xa

2.3.1◦. Let us first show that the condition (4) implies the following condition:

For every i and j, if yi < y
j
, then xi < xj . (6)

Indeed, suppose that y
i
< yj is true. If xi < xj is false, i.e., if xj ≤ xi, then,

due to (4), we would have y
j
≤ yi – which contradicts to our assumption that

y
i
< yj . This contradiction shows that the inequality xi < xj cannot be false,

i.e., it must be true.

2.3.2◦. Let us now show that the new lower endpoint xnew
b of b-th x-interval is

consistent with the unchanged upper endpoint of this interval, i.e., that xnew
b ≤

xb.

Indeed, since we assumed that ya < y
b
, then, due to the condition (6), we

will have xa < xb. Clearly, we also have xb ≤ xb. From these two inequalities,
we can conclude that max(xa, xb) ≤ xb, i.e., that xnew

b ≤ xb.

2.3.3◦. Let us now show that the replacement of the old interval [xb, xb] with
the new interval [xnew

b , xb] does not affect the existence of a monotonic function
that is consistent with all the measurement results.

By definition, xnew
b = max(xa, xb) ≥ xb, so we replace the lower endpoint xb

with a value that is either the same or larger. As a result, the new interval for
xb is a subset of the old one: [xnew

b , xb] ⊆ [xb, xb]. All other x- and y-intervals
remain unchanged.

So, if there exists a monotonic function f(x) that is consistent with the
new measurement results, i.e., for which, for some xb ∈ [xnew

b , xb] and for some
xi ∈ [xi, xi] for i 6= b, we have f(xi) ∈ [y

i
, yi]. If xb ∈ [xnew

b , xb], then the value
xb belongs to a larger interval [xb, xb] as well, so the same monotonic function
is consistent with the old measurement results.

14



Vice versa, let us assume that there exists a monotonic function f(x) that
is consistent with the old measurement results, i.e., for which, for some xb ∈
[xnew

b , xb] and for some xi ∈ [xi, xi] for i 6= b, we have f(xi) ∈ [y
i
, yi]. In

particular, for xa ∈ [xa, xa] and xb ∈ [xb, xb], we have f(xa) ≤ ya and y
b
≤

f(xb). Since we assumed that ya < y
b
, we can therefore conclude that f(xa) ≤

f(xb). Since the function f(x) is monotonic, we can therefore conclude that
xa < xb (because xa ≥ xb would then imply f(xa) ≥ f(xb)). Since xa ∈ [xa, xa],
we conclude that xa ≤ xa, therefore, from xa < xb, we can deduce that xa ≤ xb.

Similarly, from xb ∈ [xb, xb], we can conclude that xb ≤ xb ≤ xb. Since
xb is not smaller than both xa and xb, it is therefore not smaller than the
largest of them, i.e., max(xa, xb) ≤ xb ≤ xb. In other words, we conclude that
xb ∈ [xnew

b , xb]. So, if the monotonic function f(x) is consistent with the old
measurement results, then the same monotonic function f(x) is consistent with
the new measurement results as well.

These two conclusions show that the replacement of the old interval [xb, xb]
with the new interval [xnew

b , xb] does not indeed affect the existence of a mono-
tonic function that is consistent with all the measurement results.

2.3.4◦. Finally, let us show that the replacement of the old interval [xb, xb] with
the new interval [xnew

b , xb] does not change the condition (4).

Indeed, we do not change the values y
i
, yj , and xj , the only change we made

is the change in xb. Therefore, the only particular case of condition (4) that
we need to check is the case when i = b, i.e., when xi is the value xb that we
change. In other words, assuming that the condition (4) was originally true, we
must prove that this condition (4) still holds for the new value xb, i.e., that if
xi ≤ xnew

b , then y
i
≤ xb.

By definition, xnew
b = max(xa, xb). If the new value is equal to the old value,

then there is no change and, since the property (4) was true, it will be true
again.

The only case when we need to prove the property (4) is when the value
of xb actually changes, i.e., when xnew

b = xa. In this case, xi ≤ xnew
b means

xi ≤ xa. Since the property (4) holds for the original intervals, we can conclude
that y

i
≤ ya.

The transformation is applied if ya < y
b
. From y

i
≤ ya and ya < y

b
, we

conclude that y
i
< y

b
. Since y

b
≤ yb, we conclude that y

i
≤ yb. This is exactly

the desired inequality. The statement is proven.

2.4◦. Similarly, we can prove that for each a and b, if ya < y
b
, then we can

replace the value xa with the new value xnew
a = min(xa, xb) without affecting

the existence of a monotonic function that is consistent with all the measurement
results and without changing the condition (4).
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6

-
0

y
a

ya

y
b

yb

xb xa xb xold
a

6

-
0

y
a

ya

y
b

yb

xb xa xnew
a = xb xold

a

2.5◦. In Parts 2.1–2.4 of this proof, we showed that in some situations, we can
narrow down some of the x- and y-intervals without affecting the existence of
a monotonic function that is consistent with all the measurement results, and
without changing the condition (4).

In some cases, the transformation is applicable, but it does not change the
actual x− and y-intervals. For example, in Part 2.1, we showed that for each a
and b, if xa ≤ xb, then we can replace the value y

b
with the new value ynew

b
=

max(y
a
, y

b
). In this case, if xa ≤ xb and y

a
≤ y

b
, then ynew

b
= max(y

a
, y

b
) = y

b
,

so the intervals do not change.
Let us say that the transformation is applicable if we can apply it and de-

crease the width of at least one interval.
If one of these transformations is applicable, we apply it. If after that, some

other transformation is applicable, we apply this other transformation, etc. Let
us show that this process will stop after finitely many transformation steps.

16



Indeed, each transformation changes one of the endpoints of one of the in-
tervals. For example, the only transformation that changes the lower endpoint
y

b
of a y-interval [y

b
, yb] is the transformation described in Part 2.1: if this

transformation is applicable, it replaces the original value y
b

with the new value
ynew

b
= y

a
, i.e., with the lower endpoints of one of the y-intervals.

In the beginning, before we start applying all these transformations, we
have a set Y

def= {y
1
, . . . , y

n
} of at most n different values y

1
, . . . , y

n
of lower

endpoints of y-intervals. After each transformation of type 2.1, one of these
lower endpoints changes its value, but since it changes its value to one of the
existing lower endpoint values, the new value stays within the set Y . Therefore,
for every a, after each transformation, the new value y

a
belongs to the original

finite set Y .
After each transformation, each y-interval either stays the same or is replaced

by its proper subinterval. Thus, for every a, after each transformation, the lower
endpoint y

a
either remains the same or is replaced by a larger value. Since we

stay within the finite set Y of no more than n elements, we can only have
finitely many such increases (no more than n); so, for every a, no more than n
transformations of type 2.1 can change (increase) the lower endpoint y

a
.

Each transformation of type 2.1, when it is applicable, changes (increases)
one of the values y

a
. There are n such values, and each value can be changed

no more than n times. So, overall, there can be no more than n · n = n2

transformations of type 2.1.
Similarly, there can be only finitely many transformations of the other three

types, so overall, we can have only finitely many transformations.

2.6◦. We have just shown that after we apply the transformations 2.1–2.4,
eventually, we will have a situation in which no more transformations will be
applicable. The fact that transformations of type 2.1 are not applicable means
the following:

For every a and b, if xa ≤ xb, then y
a
≤ y

b
. (7)

Similarly, the fact that transformations of types 2.2–2.4 are not applicable mean
that the following three conditions hold:

For every a and b, if xa ≤ xb, then ya ≤ yb. (8)

For every a and b, if ya < y
b
, then xa ≤ xb. (9)

For every a and b, if ya < y
b
, then xa ≤ xb. (10)

Therefore, to prove the theorem, it is sufficient to consider the case when the
given intervals satisfy the conditions (7)–(10).

3◦. To complete the proof of the theorem, we must therefore show that if
the given intervals [xi, xi] and [y

i
, yi] satisfy the conditions (4) and (7)–(10),

17



then there exists a monotonic function that is consistent with all the given
measurement results 〈[xi, xi], [yi

, yi]〉.
3.1◦. If two measurement results are the same, i.e., if [xi, xi] = [xj , xj ] and
[y

i
, yi] = [y

j
, yj ], then consistency with i-th measurement result means the

same as consistency with j-th measurement result. Thus, in this situation, it is
sufficient to consider only one of these two identical measurement results.

In other words, without losing generality, we can assume that all measure-
ment results are different, i.e., either their x-intervals differ, or their y-interval
differ.

3.2◦. Let us sort the measurement results in lexicographic order ≺, so that i ≺ k
if and only if:

• either xi < xk,

• or xi = xk and y
i
< y

k
,

• or xi = xk, y
i
= y

k
, and yi < yk, or

• or xi = xk, y
i
= y

k
, yi = yk, and xi < xk.

Without losing generality, we can assume that the measurement results are
already sorted in this order.

3.3◦. In order to describe f , we must first define some auxiliary quantities.
On the x-axis, we have lower and upper endpoints of x-intervals. Let ε

denote the smallest of the non-zero distances between these endpoints.
For each i, let v(i) denote the number of values k < i for which xk = xi.

3.4◦. Let us now construct the desired function f . We will construct it by
applying linear interpolation to the values (xi, yi), where

yi
def= max(y

1
, . . . , y

i
), (11)

and xi is defined as follows:

xi
def= xi + v(i) · ε

2n
. (12)

To complete the proof, we need to prove two things:

• that the resulting function is monotonic, and

• that the resulting function is consistent with all the measurement results
〈[xi, xi], [yi

, yi]〉.
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3.5◦. Let us first prove that the function defined by linear extrapolation of
the values (xi, yi) is indeed monotonic. For that, it is sufficient to prove that
the corresponding values are monotonic, i.e., that a < b implies xa < xb and
ya ≤ yb.

By definition of yi, it is easy to see that when a < b, we have ya ≤ yb –
because then yb is the maximum of the same values y

1
, . . . , y

a
as ya and of some

additional values y
a+1

, . . . , y
b

as well.
It is therefore sufficient to prove that if a < b, then xa ≤ xb. Indeed, by

definition of the lexicographic order, a < b means that we either have xa < xb

or xa = xb. Let us consider these cases one by one.

3.5.1◦. Let us first consider the case when xa < xb.

By definition of xb, we have xb ≥ xb.
On the other hand, since ε is the smallest non-zero distance between different

x-endpoints, we conclude that ε cannot exceed the distance between xa and xb,
i.e., ε ≤ xb − xa. Therefore, xa + ε ≤ xb.

By definition of v(a), we have v(a) ≤ n, hence

xa = xa + v(a) · ε

2n
≤ xa + n · ε

2n
= xa +

ε

2
< xa + ε,

so xa < xa + ε ≤ xb ≤ xb and xa < xb.

3.5.2◦. Let us now consider the case when xa = xb.

In this case, by definition of v(i), we have v(b) = v(a) + 1, hence xa < xb.

3.6◦. Let us now prove that the resulting function f(x) is consistent with all
the measurement results.

By definition of consistency, this means that for every i, we must find a value
xi ∈ [xi, xi] for which f(xi) ∈ [y

i
, yi]. We will show that these inclusions hold

for our selected xi, when f(xi) = yi.

3.6.1◦. Let us first prove that for all i, we have xi ∈ [xi, xi], i.e., xi ≤ xi ≤ xi.

By definition of xi, we always have xi ≤ xi, so it is sufficient to prove that
xi ≤ xi.

If the i-th x-interval is non-degenerate, i.e., if xi < xi, then, since ε is the
smallest non-zero distance between different x-endpoints, we conclude that ε
cannot exceed the distance between xi and xi, i.e., ε ≤ xi − xi. Therefore,
xi + ε ≤ xi.

On the other hand, by definition of v(i), we have v(i) ≤ n, hence

xi = xi + v(i) · ε

2n
≤ xi + n · ε

2n
= xi +

ε

2
< xi + ε,

so xi < xi + ε ≤ xi.
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Let us now prove that if the i-th x-interval is degenerate, i.e., if xi = xi,
then v(i) = 0, hence xi = xi ∈ [xi, xi]. To prove that v(i) = 0, we must show
that in this case, we cannot have xi−1 = xi. Let us prove this impossibility by
reduction to a contradiction.

Indeed, let us assume that xi−1 = xi. Since the (i − 1)-th measurement
result precedes the i-th result in the lexicographic order, and xi−1 = xi, we
have one of the following three possibilities:

1. either y
i−1

< y
i
,

2. or y
i−1

= y
i

and yi−1 < yi,

3. or y
i−1

= y
i
, yi−1 = yi, and xi−1 < xi.

Since the i-th interval is degenerate and xi−1 = xi, we have xi = xi = xi−1

hence xi ≤ xi−1.

1. Due to the property (7), we conclude that y
i
≤ y

i−1
, so we cannot have

the first case.

2. Due to the property (8), we conclude that yi ≤ yi−1, so we cannot have
the second case.

3. Since xi ≤ xi−1, we cannot have the third case either.

The contradiction shows that for the degenerate i-th x-interval, we cannot have
xi−1 = xi, so for such intervals, v(i) = 0, and xi ∈ [xi, xi].

The statement is proven.

3.6.2◦. Let us now prove that for all i, we have yi ∈ [y
i
, yi], i.e., y

i
≤ yi ≤ yi.

By definition of yi as the largest of i values y
1
, . . . , y

i
, we have y

i
≤ yi, so it

is sufficient to prove that yi ≤ yi.
By definition of yi as the largest of the values y

k
(k ≤ i), it is therefore

sufficient to prove that all these i values do not exceed yi, i.e., that k ≤ i
implies that y

k
≤ yi.

For k = i, we clearly have y
i
≤ yi, so it is sufficient to prove this inequality

for k < i. We will prove this inequality by reduction to a contradiction.
Indeed, let us assume that for some k < i, we have y

k
> yi. Since k precedes

i in lexicographic order, we have one of the following two possibilities:

1. either xk < xi,

2. or xk = xi and y
k
≤ y

i
.

Let us show that none of these cases is possible:

1. Since we have the property (9), from yi < y
k
, we conclude that xi ≤ xk,

so the first case is impossible.
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2. We cannot have the second case because then, y
k
≤ y

i
≤ yi hence y

k
≤ yi,

and we assumed that y
k

> yi.

The contradiction shows that y
k

> yi is impossible, hence y
k
≤ yi and yi ∈

[y
i
, yi].
The theorem is proven.

5 General Case: Algorithm

Possible straightforward algorithm. According to our Theorem, in order
to check whether there exists a monotonic function that is consistent with the
measurement data, it is sufficient to check the condition (4).

How difficult is it to check this condition? If we simply check this property
for all i = 1, . . . , n and all j = 1, . . . , n, then checking this condition would
require O(n2) comparisons – i.e., O(n2) computational steps.

Faster algorithm: idea. We can check this condition faster if we use the
fact that the condition (4) is equivalent to the following auxiliary property:

For every i, we have y
i
≤ min

j:xj≥xi

yj . (13)

Faster algorithm: description. To check the existence of a monotonic func-
tion that is consistent with all the measurement results, we can perform the
following four-stage algorithm:

• First, we sort the values xi into an increasing sequence – this requires
O(n · log(n)) steps. We correspondingly re-order the values xi, y

i
, and yi.

After this stage, we can assume that the values xi are sorted:

x1 ≤ x2 ≤ . . . ≤ xn.

• Then, for every i from 1 to n, we compute the value Mi
def=

min(yn, yn−1, . . . , yi). Here, Mn = yn. If we already know Mi, then
we can compute the previous value Mi−1 by using a single operation
Mi−1 = min(Mi, yi−1). Thus, computing all n values requires n com-
putational steps.

• For each i from 1 to n, we can now use binary search (see, e.g., [7]) to
find the integer m(i) for which xm(i)−1 < xi ≤ xm(i) (if such a value
exists). Each binary search requires log(n) computational steps; thus, n
such searches require O(n · log(n)) steps.

• Finally, for every i from 1 to n for which m(i) exists, we check whether
y

i
≤ Mm(i):
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– if this inequality holds for all such i, then the measurement data is
consistent with monotonicity;

– otherwise, the function f(x) cannot be monotonic.

Each checking requires one comparison, so to check that this inequality
holds for all i from 1 to n, we need n comparisons.

Overall, we thus need O(n · log(n))+O(n · log(n))+O(n)+O(n) = O(n · log(n))
steps.

Faster algorithm: numerical example. In general, our algorithm can be
applied to arbitrary measurement data

(〈[x1, x1], [y1
, y1]〉, 〈[x2, x2], [y2

, y2]〉, . . . , 〈[xn, xn], [y
n
, yn]〉).

Let us illustrate the above algorithm on the example of n = 3 measurement
results:

(〈[1, 5], [2, 5]〉, 〈[4, 6], [4, 7]〉, 〈[3, 4], [3, 8]〉).
• On the first stage of the above algorithm, we soft the values x1 = 1,

x2 = 4, and x3 = 3 into an increasing sequence 1 ≤ 3 ≤ 4. After we
correspondingly rearrange the measurement results, we get the following
measurement data:

(〈[1, 5], [2, 5]〉, 〈[3, 4], [3, 8]〉, 〈[4, 6], [4, 7]〉).

• On Stage 2, we compute the values Mn:

• M3 = y3 = 7,

• M2 = min(M3, y2) = min(7, 8) = 7, and

• M1 = min(M2, y1) = min(7, 5) = 5.

• On Stage 3, we find the values m(i) for i = 1, . . . , n.

• For i = 1, the value x1 = 5 is larger than the largest upper x-endpoint
x3 = 4, so there is no value m(1).

• For i = 2, we have x2 = 3 < x2 ≤ x3 = 4, so m(2) = 3.

• For i = 3, the value x3 = 6 is larger than the largest upper x-endpoint
x3 = 4, so there is no value m(3).

• Finally, on Stage 4, we check whether y
2
≤ Mm(2) = M3. For our data,

this inequality turns into 3 < 7 and is, thus, satisfied. We therefore
conclude that there exists a monotonic function that is consistent with
the measurement results.
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Possibility of parallelization. For large n, we may want to further speed
up computations if we have several processors working in parallel. For the case
when the values xi are known precisely, parallelization is described in [34]. Let
us show how this parallelization can be extended to the general case when both
xi and yi are known with interval uncertainty.

In the general case, all four stages of the above algorithm can be parallelized
by known techniques. In particular, Stage 1 is a particular case of a general
prefix-sum problem, in which we must compute the values an, an ∗ an−1, an ∗
an−1 ∗ an−2, . . . , for some associative operation ∗ (in our case, ∗ = min).

If we have a potentially unlimited number of processors, then we can do the
following (see, e.g., [17], for the information on how to parallelize the corre-
sponding stages):

• on Stage 1, we can sort the values xi in time O(log(n));

• on Stage 2, we can compute the values Mi (i.e., solve the prefix-sum
problem) in time O(log(n));

• on Stage 3, we can use n processors, each of which compute the corre-
sponding value m(i) in time O(log(n));

• finally, on Stage 4, we can use n processors, each of which checks the
corresponding inequality in time O(1).

As a result, we can check monotonicity in time

O(log(n)) + O(log(n)) + O(log(n)) + O(1) = O(log(n)).

If we have p < n processors, then we can:

• on Stage 1, sort n values in time O((n · log(n))/p + log(n)) [17];

• on Stage 2, compute the values Mi in time O(n/p + log(p)) [3];

• on Stage 3, we subdivide n indices i between p processors, so each processor
computes m(i) for n/p indices i; computing each index requires log(n)
time, so the overall time is (n/p) · log(n) = O((n · log(n))/p);

• finally, on Stage 4, each of p processors checks the desired inequality for
its n/p indices; this requires time O(n/p).

Overall, we thus need time

O

(
n · log(n)

p
+ log(n)

)
+ O

(
n

p
+ log(p)

)
+ O

(
n · log(n)

p

)
+ O

(
n

p

)
=

O

(
n · log(n)

p
+ log(n) + log(p)

)
.
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