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Computing Best-Possible Bounds for the

Distribution of a Sum of Several Variables is

NP-Hard ?

Vladik Kreinovich ∗

Department of Computer Science, University of Texas at El Paso, El Paso, TX
79968, USA

Scott Ferson

Applied Biomathematics, 100 North Country Road. Setauket, NY 11733, USA

Abstract

In many real-life situations, we know the probability distribution of two random
variables x1 and x2, but we have no information about the correlation between x1

and x2; what are the possible probability distributions for the sum x1 + x2? This
question was originally raised by A. N. Kolmogorov. Algorithms exist that provide
best-possible bounds for the distribution of x1 +x2; these algorithms have been im-
plemented as a part of the efficient software for handling probabilistic uncertainty.
A natural question is: what if we have several (n > 2) variables with known dis-
tribution, we have no information about their correlation, and we are interested in
possible probability distribution for the sum y = x1 + . . .+xn? Known formulas for
the case n = 2 can be (and have been) extended to this case. However, as we prove
in this paper, not only are these formulas not best-possible anymore, but in general,
computing the best-possible bounds for arbitrary n is an NP-hard (computationally
intractable) problem.

Key words: sum of random variables, best-possible bounds, NP-hard

Preprint submitted to Elsevier Science 19 June 2005



1 Error Estimating for Indirect Measurements: Practical Problem;
What Is Known about Its Solution

Real-life problem: error estimation for indirect measurements. In
many real-life situations, we are interested in the value of a physical quantity
y that is difficult or impossible to measure directly. Examples of such quantities
are the distance to a star and the amount of oil in a given well. Since we cannot
measure y directly, a natural idea is to measure y indirectly. Specifically, we
find some easier-to-measure quantities x1, . . . , xn which are related to y by a
known relation y = f(x1, . . . , xn); this relation may be a simple functional
transformation, or complex algorithm (e.g., for the amount of oil, numerical
solution to an inverse problem). Then, to estimate y, we first measure the
values of the quantities x1, . . . , xn, and then we use the results x̃1, . . . , x̃n of
these measurements to to compute an estimate ỹ for y as ỹ = f(x̃1, . . . , x̃n).

-

. . .

-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

Computing an estimate for y based on the results of direct measurements is
called data processing; data processing is the main reason why computers were
invented in the first place, and data processing is still one of the main uses of
computers as number crunching devices.
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Measurement are never 100% accurate, so in reality, the actual value xi of
i-th measured quantity can differ from the measurement result x̃i. Because

of these measurement errors ∆xi
def
= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n) of

data processing is, in general, different from the actual value y = f(x1, . . . , xn)
of the desired quantity y; see, e.g., [19]. It is desirable to describe the error

∆y
def
= ỹ − y of the result of data processing.

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

To do that, we must have some information about the errors of direct mea-
surements.

Let us review the main types of this information.

Case of interval uncertainty. For measuring instruments, a manufacturer
usually provides an upper bound ∆ on the measurement error ∆x = x̃− x.

Indeed, a word “measurement” usually means that as a result, we get some
guaranteed information about the measured quantity; so after we observe a
measurement result x̃, we should be able to conclude that the actual (un-
known) values of the measured quantity is bounded by some bounds.

In many practical situations, this upper bound ∆ is the only information
that we have about the measurement’s accuracy. In such situations, after we
perform the measurement and record the measured value as x̃, the only in-
formation that we have about the actual (unknown) value of the measured
quantity x is that x must be within the interval x = [x̃−∆, x̃ + ∆].

As a result, we arrive at the following problem: based on n known intervals
x1, . . . ,xn, and on a known function y = f(x1, . . . , xn), we must determine the
range y of the function y = f(x1, . . . , xn) when xi ∈ xi for all i. The problem
of computing such a range is known as the problem of interval computations;
see, e.g., [7,10].

It is known that in general, the problem of computing the range exactly
(or even with a given accuracy ε) is NP-hard (computationally intractable).
Specifically:
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• for linear functions f(x1, . . . , xn) = a0 + a1 · x1 + . . . + an · xn, there is an
efficient algorithm for computing the exact range for y;

• however, already for general quadratic functions f(x1, . . . , xn) = a0 +
n∑

i=1
ai ·

xi +
n∑

i=1

n∑
=1

aij · xi · xj, the problem of computing the exact (or approximate)

range is NP-hard.

Case of fuzzy uncertainty. Often, in addition to (or instead of) the guar-
anteed bound for ∆xi, an expert can provide bounds that contain ∆xi with
a certain degree of confidence. Usually, we know several such bounding inter-
vals corresponding to different degrees of confidence. Such a nested family of
intervals is also called a fuzzy set, because it turns out to be equivalent to a
more traditional definition of fuzzy set [1,8,13–15] (if a traditional fuzzy set is
given, then different intervals from the nested family can be viewed as α-cuts
corresponding to different levels of uncertainty α).

In the case of fuzzy uncertainty, for each degree of confidence α, we must
solve the problem corresponding to the α-cut intervals; thus, instead of a
single interval of possible values of y = f(x1, . . . , xn), we get a nested family
of intervals corresponding to different α – i.e., a fuzzy-valued range for y =
f(x1, . . . , xn).

Similarly to the interval case:

• the problem of computing this fuzzy range can be effectively solved for linear
functions f(x1, . . . , xn);

• however, for quadratic functions y = f(x1, . . . , xn), this problem is NP-hard.

Ideal case: Probabilistic uncertainty. In the ideal case, if each measuring
instrument has been thoroughly analyzed and calibrated, we know the exact
probability distribution for each random variable ∆xi. As a result, after i-th
measurement, we know the probability distribution of actual values xi. This
probability distribution can be described, e.g., by the corresponding cumula-

tive distribution function (cdf) Fi(t)
def
= Prob(xi < t).

It is worth mentioning that in most practical cases, the distribution functions
Fi(t) are not Gaussian; see, e.g., [16,17].

Based on n known cdfs F1(t), . . . , Fn(t) and on a known function y =
f(x1, . . . , xn), we must determine the distribution (cdf) F (t) for y =
f(x1, . . . , xn).
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-

. . .

-

-

Fn(t)

F2(t)

F1(t)

-F (t)f

When measurement errors of individual xi are possibly correlated,
the corresponding probabilistic problem becomes difficult. When all
the measurement errors are independent, i.e., if xi are independent random
variables, then we can, e.g., use Monte-Carlo simulations and/or analytical
formulas to come up with the desired distribution for y. In many practical sit-
uations, however, we know that the measurement errors of different measuring
instruments are not independent, because they contain components that come
from the same outside error source (e.g., from the power grid).

Ideally, we should find out how exactly the variables xi are correlated, i.e., we
should get the joint probability distribution of the corresponding n variables.
Unfortunately, this is very difficult:

• to get a distribution of a single variable with “k bins” accuracy, it is sufficient
to divide the real line into k bins;

• however, to describe a joint distribution of n variables with the same accu-
racy, we need kn bins.

For large n, the number kn becomes larger than the number of particles in the
Universe (see, e.g., [10,18]), so this is not practically possible.

As a result, for n variables, we face the following problem: we know the distrib-
utions Fi(t) for n variables x1, . . . , xn, we know the function y = f(x1, . . . , xn),
but we do not have any information about the correlation between xi. In such
situation, there may be many different joint distributions for x1, . . . , xn, and
for these different joint distributions, we may get different distributions F (t)
for y. What we would like to find, in this situation, is the range [F (t), F (t)]
of possible values of F (t) for each t. In other words, we would like to find
the best-possible bounds for a distribution of a function y = f(x1, . . . , xn) of
several random variables x1, . . . , xn. Let us formulate this problem in precise
mathematical terms.

Formulation of the problem in mathematical terms. We know n cdfs
F1(t), . . . , Fn(t), and we know a function y = f(x1, . . . , xn) from Rn to R.
Based on this information, we would like to compute the range [F (t), F (t)],
where:
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• F (t) is the infimum of possible values F (t) = Prob(f(x1, . . . , xn) < t) over
all joint distributions of (x1, . . . , xn) for which the marginal distributions
coincide with the given cdfs Fi(t), and

• F (t) is the supremum of possible values F (t) over all such joint distributions.

What is known: case of n = 2 variables. In spite of the clear practical
importance of this problem, no general solution was known until the early
1980s, when G. D. Makarov, a student of A. N. Kolmogorov, in his paper
[12], provided the exact formulas for F (t) and F (t) for the simplest case when
n = 2 and f(x1, x2) = x1 + x2. These formulas were later simplified, in the
paper [5], into the following form:

F (t) = max
t1,t2:t1+t2=t

max(F1(t1) + F2(t2)− 1, 0); (1)

F (t) = min
t1,t2:t1+t2=t

min(F1(t1) + F2(t2), 1). (2)

The fact that these formulas do provide lower and upper bounds for F (t) is
reasonably easy to understand. Indeed, it is well known that for any two events
A and B, the probability P (A∨B) cannot exceed P (A) + P (B). Since A & B
is equivalent to ¬(¬A ∨ ¬B), we conclude that

1−P (A & B) = P (¬A∨¬B) ≤ P (¬A) + P (¬B) = (1−P (A)) + (1−P (B)),

hence P (A & B) ≥ P (A) + P (B) − 1. Since the probability is always non-
negative, we conclude that P (A & B) ≥ max(P (A) + P (B)− 1, 0).

For every t1 and t2 for which t1 + t2 = t, the inequalities x1 < t1 and x2 < t2
imply that y

def
= x1 +x2 < t1 + t2. Thus, the probability F (t) that y < t cannot

be smaller than the probability Prob((x1 < t1) & (x2 < t2)). Due to the above
inequality, this probability, in turn, cannot be smaller than

max(Prob(x1 < t1) + Prob(x2 < t2)− 1, 0) = max(F1(t1) + F2(t2)− 1, 0),

so F (t) ≥ max(F1(t1) + F2(t2) − 1, 0). Since F (t) is larger than or equal to
this expression for all t1 and t2 for which t1 + t2 = 1, it must be also larger
than or equal to the largest of these expressions – which is exactly the above
lower bound F (t).

The proof that the expression (2) is the upper bound is similar. The non-
trivial part of the result (1), (2) is proving that these bounds are indeed the
best possible.

Further developments: brief overview. The seminal paper [22] extended
the above formulas to the situations with more complex functions f(x1, x2)
and/or situations in which we have some information about the correlation
between x1 and x2. The formulas proposed in [22] formed the basis for an
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efficient software system RiskCalc for handling probabilistic uncertainty (see,
e.g., [2]); for a theoretical foundation of the corresponding formulas, see, e.g.,
[4,20].

Similar formulas have also been analyzed, clarified, implemented, and tested
in [11].

Case of n > 2 variables: what is known. For the sum of n > 2 random
variables x1, . . . , xn, similar arguments lead to similar formulas. Specifically,
it is known that for any two sequence of events A1, . . . , An, the probability
P (A1 ∨ . . . ∨ An) cannot exceed P (A1) + . . . + P (An). Since A1 & . . . & An is
equivalent to ¬((¬A1) ∨ . . . ∨ (¬An)), we conclude that

1− P (A1 & . . . & An) = P ((¬A1) ∨ . . . ∨ (¬An)) ≤

P (¬A1) + . . . + P (¬An) = (1− P (A1)) + . . . + (1− P (An)),

hence P (A1 & . . . & An) ≥ P (A1)+ . . .+P (An)−(n−1). Since the probability
is always non-negative, we conclude that

P (A1 & . . . & An) ≥ max(P (A1) + . . . + P (An)− (n− 1), 0).

Now, for every tuple (t1, . . . , tn) for which t1 + . . . + tn = t, the inequalities

x1 < t1, . . . , x2 < t2 imply that y
def
= x1 + . . . + xn < t1 + . . . + tn. Thus, the

probability F (t) that y < t cannot be smaller than the probability

Prob((x1 < t1) & . . . & (xn < tn)).

Due to the above inequality, this probability, in turn, cannot be smaller than

max(Prob(x1 < t1) + . . . + Prob(xn < tn)− (n− 1), 0) =

max(F1(t1) + . . . + Fn(tn)− (n− 1), 0),

so F (t) ≥ max(F1(t1) + . . . + Fn(tn)− (n− 1), 0). Since F (t) is larger than or
equal to this expression for all tuples (t1, . . . , tn) for which t1 + . . . + tn = 1, it
must be also larger than or equal to the largest of these expressions – hence
F (t) ≥ F−(t), where

F−(t)
def
= max

t1,...,tn:t1+...+tn=t
max(F1(t1) + . . . + Fn(tn)− (n− 1), 0). (3)

Similarly, we can conclude that F (t) ≤ F+(t), where

F+(t)
def
= min

t1,...,tn:t1+...+tn=t
min(F1(t1) + . . . + Fn(tn), 1). (4)
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2 New Result: For Probabilistic Uncertainty, the Problem of Error
Estimation for Indirect Measurements Is NP-hard

Precise formulation of the problem: reminder. We know n cdfs
F1(t), . . . , Fn(t), and we know a function y = f(x1, . . . , xn) from Rn to R.
Based on this information, we would like to compute the range [F (t), F (t)],
where:

• F (t) is the infimum of possible values F (t) = Prob(f(x1, . . . , xn) < t) over
all joint distributions of (x1, . . . , xn) for which the marginal distributions
coincide with the given cdfs Fi(t), and

• F (t) is the supremum of possible values F (t) over all such joint distributions.

Question: are the known bounds (3)–(4) best possible? In the first
section, we have described formulas that bound the desired values F (t) and
F (t). For n = 2, as we have mentioned, these bounds are the best possible.
A natural question is: are the corresponding bounds (3)–(4) best possible for
n > 2 as well?

The paper [21] implicitly formulates a hypothesis that these bounds are indeed
the best possible.

Our results. In this paper:

• first, we show that these bounds are not the best possible;
• second, we prove that computing the best-possible bounds for a general n

is an NP-hard (computationally intractable) problem.

Comments.

• It is worth repeating that, as we have mentioned, for linear functions

f = a0 +
n∑

i=1
ai · xi, under interval and fuzzy uncertainties the problem of

computing the uncertainty of y can be efficiently solved – in contrast to the
probabilistic case.

• Since in the probabilistic case, the problem is NP-hard already for linear
functions y = f(x1, . . . , xn), this problem remains NP-hard for more general
classes of functions, e.g., for all quadratic functions, for all smooth functions,
etc.

• Sometimes, the data processing algorithm is not smooth. For example, we
may select the largest value y = max(x1, . . . , xn), or we may deal with a
threshold y = θ(a0 + a1 · x1 + . . . + an · xn), where θ(x) = 0 for x < 0
and θ(x) = 1 for x ≥ 0. What can we then say about the cdf F (t) of the
corresponding quantity y?
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· For maximum, there is an explicit formula for the bounds on F (t). Indeed,
max(x1, . . . .x)n) < t if and only if (x1 < t) & . . . (xn < t). Since we
know the values Fi(t) = Prob(xi < t), we can thus conclude that F (t) =
max(F1(t) + . . . + Fn(t)− (n− 1), 0) and F (t) = min(F1(t), . . . , Fn(t)).

· In contrast, for the threshold function y = θ(a0 + a1 · x1 + . . . + an · xn),
the condition y < 1 is equivalent to a1 · x1 + . . . + a + n · xn < −a0. Thus,
even for a1 = . . . = an = 1, the value F (1) is equal to the probability
Prob(x1 + . . . + xn < −a0). Since, as we prove in this paper, the problem
of computing the best-possible bound for this probability is NP-hard, the
problem of computing the best-possible bounds for F (t) is NP-hard as
well.

First result: Example when the bounds (3)–(4) are not the best
possible. We will consider the simplest possible example when n = 3 and all
3 distributions are uniform distributions on the interval [0, 1], i.e., Fi(t) = 0
for t ≤ 0, Fi(t) = t for 0 ≤ t ≤ 1, and Fi(t) = 1 for t ≥ 1.

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

0

Fi(t)
1

1 t

In this case, once ti ∈ [0, 1], we have F1(t1) + F2(t2) + F3(t3) = t1 + t2 + t3.
Therefore, once t1+t2+t3 = t, we have F1(t1)+F2(t2)+F3(t3) = t1+t2+t3 = t
hence min(F1(t1) + F2(t2) + F3(t3), 1) = min(t, 1). Therefore, the minimum in
the formula (4) is the minimum of identical values, hence F+(t) = min(t, 1).
In particular, for t = 1, we have F+(1) = min(1, 1) = 1.

-

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

0

F+(t) = min(t, 1)
1

1 t
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So, for an arbitrary joint distribution of 3 random variables x1, x2, x3 for which
each marginal distribution is uniform on [0, 1], for the cdf F (t) of the sum
y = x1 + x2 + x3, we have F (1) ≤ F+(1) = 1.

Let us now show that this bound F (1) ≤ F+(1) = 1 cannot be the best
possible, i.e., that we cannot have F (1) = 1. Indeed, if F (1) = 1, this means
that with probability 1, we have y < 1. Thus, the expected value E[y] of y
cannot exceed 1: E[y] ≤ 1. On the other hand, since y = x1 +x2 +x3, we have
E[y] = E[x1] + E[x2] + E[x3] = 3 · 0.5 = 1.5 – a contradiction with the fact
that E[y] = 1.

We can show that not only F (1) cannot be equal to 1, it cannot be even close
to 1: e.g., if E(1) ≥ 0.9, this means that the probability that y ≥ 1 is at most
0.1. So, with probability ≤ 1, we have y ≤ 1, and with probability ≤ 0.1, we
have y = x1 + x2 + x3 ≤ 3 · 1 = 3. Thus, the expected value E[y] of y cannot
exceed 1 · 1 + 0.1 · 3 = 1.3 – still a contradiction.

In this particular example, we can add additional inequalities on the cdf F (t)
caused by the fact that we know the value E[y] = 1.5 of the first moment (see,
e.g., [4]). We will show, however, that in general, the problem of computing
the best-possible bounds on F (t) is NP-hard.

Second result: Computing best-possible bounds for the distribution
of a sum of several variables is NP-hard – a proof. To prove NP-
hardness of the problem of computing the best-possible bounds for F (t), we
will reduce, to this problem, a known NP-problem, namely, the following par-
tition problem (see, e.g., [10,18]): given n positive integers s1, . . . , sn, check
whether it is possible to find values εi ∈ {−1, 1} for which ε1 ·s1+. . .+εn ·sn =
0.

We will reduce each instance of this problem to the case when we have n
random variables; for every i from 1 to n, i-th variable xi is equal to −si with
probability 1/2 and to si with probability 1/2. For each of these variables, we

have E[xi] = (1/2) ·(−si)+(1/2) ·si = 0, hence for their sum y
def
= x1+ . . .+xn,

we have E[y] = E[x1] + . . . + E[xn] = 0.

Let us show that F (0) = 0 if and only if the original instance of the par-
tition problem has a solution. Indeed, if the original instance has a solution
(ε1, . . . , εn), then we can take the joint distribution in which x = (x1, . . . , xn)
is equal to (ε1 ·s1, . . . , εn ·sn) with probability 1/2 and to (−ε1 ·s1, . . . ,−εn ·sn)
with probability 1/2. In this case, all n marginal distributions are as desired;
on the other hand, the sum y = x1 + . . . + xn is equal to 0 with probability 1,
hence F (0) = Prob(y < 0) = 0.
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Vice versa, let us assume that F (0) = 0. By definition of F (t), this means
that for every δ > 0, there exists a joint distribution for which F (0) ≤ δ. Let
us select some small ε > 0 (we will later determine which value to select), and
let us select a distribution F that satisfies the above inequality for this δ. We
will use reduction to a contradiction to prove that in this case, the original
instance of the partition problem has a solution.

According to our choice of the random variables xi, the only possible values of
xi are±si, i.e., the values εi·si for some εi ∈ {−1, 1}. So, if the original instance

does not have a solution, then all possible values of y =
n∑

i=1
xi =

n∑
i=1

εi · si are

non-zero integers. Thus, if y ≥ 0, we have y ≥ 1.

The smallest possible value of y is −S, where S
def
= s1 + . . . + sn.

The expected value E[y] =
∑
j

pj · yj of y can be represented as the sum

E = E+ + E− of two sub-sums E+ and E− corresponding to positive and
negative yj.

For the joint distribution F for which F (0) = Prob(y < 0) ≤ δ, with proba-
bility ≤ δ, we have values ≥ −S, and with probability at least 1− δ, we have
values ≥ 1.

The overall probability of positive values is at least 1 − δ, and each positive
value is at least 1, so E+ ≥ (1 − δ) · 1 = 1 − δ. On the other hand, the
probability of negative values is ≤ δ, and each negative value is ≥ −S, so
E− ≥ −δ · S. Therefore, E[y] = E− + E+ ≥ (1− δ)− δ · S = 1− (S + 1) · δ;
so, for δ < 1/(S + 1), we have E[y] > 0 – a contradiction with E[y] = 0.
This contradiction shows that our assumption was false; hence, the original
instance of the partition problem has a solution.

The reduction is proven, thus computing best-possible bounds for the distri-
bution of a sum of several variables is indeed NP-hard.

Comment. The fact that problem turns out to be NP-hard is not very surpris-
ing: many other interval problems are NP-hard (see, e.g., [10]), as well as many
problems related to combination of interval and probabilistic uncertainty (see,
e.g., [3,6,9]).

Conclusion

In many practical situations, we know the probability distribution of several
random variables x1, . . . , xn, but we have no information about the correlation
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between xi; what are the possible probability distributions for the sum y =
x1 + . . . + xn? This question was originally raised by A. N. Kolmogorov. For
n = 2, there exist efficient algorithms that provide best-possible bounds for
the distribution of x1 + x2; these algorithms have been implemented as a part
of the efficient software for handling probabilistic uncertainty.

The known formulas can be extended to the case n > 2. In this paper, we have
proven that for n > 2, the known formulas are not best-possible. Moreover,
we have proven that for n > 2, the problem of computing the best-possible
bounds is, in general, NP-hard (computationally intractable).
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Variance for Interval Data is NP-Hard”, ACM SIGACT News, 2002, Vol. 33,
No. 2, pp. 108–118.

[4] S. Ferson, D. Myers, and D. Berleant, Distribution-free risk analysis: I. Range,
mean, and variance, Applied Biomathematics, Technical Report, 2001.

[5] M. J. Frank, R. B. Nelsen, and B. Schweizer, “Best-possible bounds for the
distribution of a sum – a problem of Kolmogorov”, Probability Theory and
Related Fields, 1987, Vol. 74, pp. 199–211.

[6] L. Granvilliers, V. Kreinovich, and N. Müller, “Novel Approaches to Numerical
Software with Result Verification”, In: R. Alt, A. Frommer, R. B. Kearfott, and
W. Luther, editors, Numerical Software with Result Verification, International
Dagstuhl Seminar, Dagstuhl Castle, Germany, January 19–24, 2003, Revised
Papers, Springer Lectures Notes in Computer Science, 2004, Vol. 2991, pp. 274–
305.

[7] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis: With
Examples in Parameter and State Estimation, Robust Control and Robotics,,
Springer-Verlag, London, 2001.

[8] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,
Prentice Hall, Upper Saddle River, New Jersey, 1995.

[9] V. Kreinovich, “Probabilities, Intervals, What Next? Optimization Problems
Related to Extension of Interval Computations to Situations with Partial
Information about Probabilities”, Journal of Global Optimization, 2004, Vol. 29,
No. 3, pp. 265–280.

12



[10] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity
and Feasibility of Data Processing and Interval Computations, Kluwer,
Dordrecht, 1997.

[11] W. A. Lodwick and K. D. Jamison, “Estimating and Validating the Cumulative
Distribution of a Function of Random Variables: Toward the Development of
Distribution Arithmetic”, Reliable Computing, 2003, Vol. 9, No. 2, pp. 127–141.

[12] G. D. Makarov, “Estimates for the distribution function of a sum of two random
variables when the marginal distributions are fixed”, Theory of Probability and
its Applications, 1981, Vol. 26, pp. 803–806.

[13] R. E. Moore and W. A. Lodwick, “Interval Analysis and Fuzzy Set Theory”,
Fuzzy Sets and Systems, 2003, Vol. 135, No. 1, pp. 5–9.

[14] H. T. Nguyen and V. Kreinovich, “Nested Intervals and Sets: Concepts,
Relations to Fuzzy Sets, and Applications”, In: R. B. Kearfott et al. (eds.),
Applications of Interval Computations, Kluwer, Dordrecht, 1996, pp. 245–290

[15] H. T. Nguyen and E. A. Walker, First Course in Fuzzy Logic, CRC Press, Boca
Raton, FL, 1999.

[16] P. V. Novitskii and I. A. Zograph, Estimating the Measurement Errors,
Energoatomizdat, Leningrad, 1991 (in Russian).

[17] A. I. Orlov, “How often are the observations normal?”, Industrial Laboratory,
1991, Vol. 57. No. 7, pp. 770–772.

[18] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading,
Massachusetts, 1994.

[19] S. Rabinovich, Measurement Errors: Theory and Practice, Amer. Inst. Phys.,
N.Y., 1993.

[20] H. Regan, S. Ferson, and D. Berleant, “Equivalence of five methods for bounding
uncertainty”, Journal of Approximate Reasoning, 2004, Vol. 36, No. 1, pp. 1–30.

[21] R. C. Williamson, “An Extreme limit theorem for dependency bounds of
normalized sums of random variables”, Information Sciences, 1991, Vol. 56,
pp. 113–141.

[22] R. Williamson and T. Downs, “Probabilistic arithmetic I: numerical methods
for calculating convolutions and dependency bounds”, International Journal of
Approximate Reasoning, 1990, Vol. 4, No. 2, pp. 89–158.

13


	University of Texas at El Paso
	DigitalCommons@UTEP
	6-1-2005

	Computing Best-Possible Bounds for the Distribution of a Sum of Several Variables is NP-Hard
	Vladik Kreinovich
	Scott Ferson
	Recommended Citation



