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Abstract

In classical (two-valued) logic, CNF and DNF
forms of each propositional formula are equiv-
alent to each other. In fuzzy logic, CNF and
DNF forms are not equivalent, they form an in-
terval that contains the fuzzy values of all clas-
sically equivalent propositional formulas. If we
want to select a single value from this interval,
then it is natural to select a linear combination
of the interval’s endpoints. In particular, we
can do that for CNF and DNF forms of “and”
and “or”, thus designing natural fuzzy ana-
logues of classical “and” and “or” operations.
The problem with thus selected “and” and ” or”
operations is that, contrary to common sense
expectations, they are not associative. In this
paper, we show the largest possible value of
the corresponding non-associativity is reason-
ably small and thus, this non-associativity does
not made these operations impractical.

1 Motivation

Fuzzy logic is a generalization of the classical 2-
valued logic, where instead of two truth values “true”
and “false” (corresponding to 1 and 0), we have the
entire interval [0,1] of truth values.

To get a logic, we must extend logical operations to
these values. In classical logic, every logical opera-
tion can be represented as a composition of conjunc-
tion (“and”, &), disjunction (“or”, V), and negation
(“not”, —). Therefore, to generalize an arbitrary log-
ical operation, it is sufficient to generalize these three
basic logical operations. Thus, when a fuzzy logic is
described, it is usually described in terms of these
three operations: t-norm (“and”), t-conorm (“or”),

and negation.

To generalize a more complex logical operation, we
can:

e represent this operation as a composition of
“and”, “or”, and “not”, and
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e replace “and”, “or”, and “not” with, corre-
spondingly, a t-norm, a t-conorm, and a nega-
tion operation.

The main problem with this approach is that differ-
ent representations of the original logical operation
lead to different results — even if we use the simplest
possible operations min, max, and 1 — z.

2 DNF-CNF interval

Since different classically equivalent logical formulas
lead to non-equivalent fuzzy expressions, it is rea-
sonable, instead of considering all possible classically
equivalent forms, to select some special forms.

In classical (2-valued) logic, two forms are most fre-
quently used:

¢ a Conjunctive Normal Form (CNF), in which a
formula is represented as disjunction of conjunc-
tions, and

e a Disjunctive Normal Form (DNF), in which a
formula is represented as conjunction of disjunc-
tions.

In view of this fact, one of the authors (I.B.T.) pro-
posed to use, in fuzzy logic, fuzzy equivalents of the
CNF and DNF forms. He has shown that, if we



use min, max, and 1 — z, then for all binary opera-
tions, the value of every other form lies in the interval
formed by CNF and DNF values. In [10], this result
was proven for logical operations with an arbitrary
number of variables.

As a result, for each logical formula, instead of a
single truth value, we have the entire interval of truth
values.

3 Selecting a value from the
DNF-CNF interval: general
description

Fuzzy logic is used to formalize human reasoning. It
is therefore used in many applications where human
reasoning is used. In particular, one of the major
areas of application of fuzzy logic is decision making
based on expert opinion. For example, when analyz-
ing satellite photos and other geophysical informa-
tion, we must make a decision on whether we should
start drilling for water (or oil) in this area or not.

If we need to make a decision, then we may select
a certain action if our degree of confidence that this
action will be beneficial exceeds a certain threshold,
and do not select it if the corresponding degree of
confidence is below the chosen threshold. To imple-
ment this procedure, we must select a value within
the interval, and compare this value with the thresh-
old. How can we select such a value?

There are several natural ways to select a value from
the interval [a—, a™]:

¢ We can select the most pessimistic estimate a~.
e We can select the most optimistic estimate a™.

e More generally, we can gauge a “subjective
probability” of the pessimistic estimate as some
number ¢, and use the “expected value”

a-a”+(1—-a)-at.

This criterion, originally proposed in [1], has been
successfully used in many application areas includ-
ing fuzzy logic (see, e.g., [8, 9]). This criterion sounds
somewhat ad hoc, but there are solid theoretical
foundations for it; see, e.g., [3, 6].

So, in general, to get a value within the DNF-CNF
interval, we should select a real number « from the

interval [0, 1], and select the a-combination of CNF
and DNF forms.

4 Selecting a value from the
DNF-CNF interval: “and” and
“or” operations

Let us show what this general approach turns into
when we apply it to the formulas A& B and AV B.

For A& B, the DNF form is A& B, and the CNF
form is (AV-B) & (—wAV B) & (AV B). If we replace
& by min and V by max, then the DNF operation
leads to min(a, b), and the CNF operation leads to

min(max(a, 1 — b), max(1 — a, b), max(a, b)).

Thus, the operation obtained by combining these ex-
pression takes the following form:

a& b - min(a,b)+ (1)
(1 — @) - min(max(a, 1 — b), max(1 — a, b), max(a, b));

For AV B, the CNF form is A V B, while the DNF
formis (A& B)V(A& —B)V(—~A& B). If we replace
& by min and V by max, then the CNF operation
leads to max(a,b), and the DNF operation leads to

max(min(a,1 — b),min(1 — a,b), min(a, b)).

Thus, the operation obtained by combining these ex-
pression takes the following form:

avbh (2)

a - max(min(a,1 — b), min(1 — a,b), min(a, b))+

(1 - a) - max(a, b).

5 Non-associativity of the resulting
operations and why it is a problem

These operations seem reasonable, but there is one
problem with them. Intuitively, e.g., the conjunc-
tion A & B & C of three statements cannot be viewed
both as (A& B) & C and as A& (B & C). It is there-
fore reasonable to expect that if we replace & with
the corresponding fuzzy operation, we should get
the same result, i.e., we should have (a& b)&c =
a& (b& c). In other words, it is natural to require



that the corresponding “and”- and “or”-operations
be associative.

Alas, the above operations are not associative. Let
us give an example of such non-associativity. For
a=0and b=c=0.5, we have:

e a&b=(1-a)-0.5, hence

(a&b)&c=((1-a)-0.5)&0.5 =

a-(1—a)-05+(1—a)-0.5;

e on the other hand, b& ¢ = 0.5, hence

a& (b&c)=0-05=(1-a)-0.5.

The values (a& b)& ¢ and a & (b& c¢) are different,
and the difference (a& b) & c — a& (b& ¢) between
them is equal to a - (1 — a)/2.

For V, the values a = 1 and b = ¢ = 0.5 provide a
similar example.

6 Non-associativity may not be a
serious problem

This problem may not be that practically serious if
the degree of non-associativity, i.e., the difference be-
tween (a& b) & c and a & (b& c), is always small. In-
deed, the value a, b, and ¢ come from experts, and
experts can only approximately describe their de-
grees of confidence. Typically, in fuzzy control, no
more than 7 values are used for each variable, which
shows that we can probably meaningfully distinguish
no more than 7 different levels on the interval [0, 1].
So, if the degree of non-associativity does not exceed
1/7, we are OK.

The main purpose of this paper is to prove that this
is indeed true:

Theorem. For every «, the largest possible value
of degree of non-associativity for the corresponding
operations (1) and (2) is a- (1 — a)/2.

Since the largest possible value of this expression is
1/8, which is smaller than 1/7, we are OK.

7 Methodological comment:
DNF-CNF interval from a more
general viewpoint

To better understand the problem and our result,
let us recall where the DNF-CNF interval fits into
the general methodology of fuzzy systems (see [7]
for more details). In general, each property can be
associated with a set — namely, the set of all the
objects that satisfy this property.

In the classical (two-valued) propositional logic, we
consider “two-valued” sets — i.e., sets A for which
every element z either belongs to this set or does
not belong to it. For these sets, we consider “two-
valued” statements, i.e., statements which are either
true or false. We can briefly describe this approach
as

[Two-valued set, Two-valued logic].

In the above approach, we are allowing fuzzy sets,
i.e., sets A for which, for an element z, it is possible
not only that z € A or z ¢ A, but that we have
some intermediate degrees — intermediate between
absolute belonging and absolute not belonging — with
which z belongs to a given set A. However, the state-
ments that we are proving are “exact” (two-valued):
we may be interested in whether the two degrees are
exactly the same or not. In other words, since we are
following the approach in which the sets are fuzzy,
but the logic (statements) that we make about these
sets is still two-valued:

[Fuzzy set, Two-valued logic].

Our main argument is that, since we are considering
fuzzy values anyway, it is OK if we have the val-
ues (a& b) & ¢ and a & (b& c) not exactly equal, but
very close. In other words, our argument is that we
are considering fuzzy sets, it makes sense to allow
statements about these sets to be also fuzzy, i.e., to
consider a “consistently fuzzy” approach in which
both sets and logic (statements about these sets) are
fuzzy:

[Fuzzy set, Fuzzy logic|.
From this viewpoint, our result can be viewed as

a specific implementation of a general “consistently
fuzzy” methodology described in [7].



8 Proof

1°. One can easily check that our operations & and
V are “dual” in the sense that

aVb=1—(1-a)& (1-0).

In other words, if ¢ = a &b, then ¢’ = a' V b, where
we denoted o' & 1 — a, b defy b, and ¢ S Y
We can therefore conclude that the difference
[(a&b) & c—a & (b& ¢)| corresponding to a, b, and ¢
is equal to the difference |(a' V') V' —a' vV (V' V)|
corresponding to the values a', b', and ¢’. Thus, any
possible value of non-associativity for & is also a
possible value of non-associativity for V.

Vice versa, any difference |[(aVb)Vec—aV (bVc)| is
equal to the difference |(a’' & V') & ' — a' & (b' & )|
corresponding to the values a’, b', and ¢’. Thus, any
possible value of non-associativity for V is also a pos-
sible value of non-associativity for & .

So, the set of possible values of non-associativity is
the same for both operations & and V. We want to
prove, for each of these sets, that the largest possible
value of the difference is equal to - (1 —a)/2. Since
the two sets are equal, it is sufficient to prove this
result for only one of these sets. In other words, it is
sufficient to consider only one of the two operations
& and V. In the following proof, we will provide the
proof for &.

2°. We have already given an example that shows
that the difference between (a & b) & cand a & (b& ¢)
can be equal to a - (1 — a)/2. Thus, to prove our
theorem, it is sufficient to prove that for all other
possible values of a, b, and ¢, the difference cannot
exceed a - (1 — a)/2.

3°. Let us give a general idea of how we will prove
our result.

In general, the values a, b, and ¢ must be from the
interval [0, 1]:

0<a<1l; 0<b<1; 0<c<l. (3)

Formulas for & contain the operations min and max
applied to linear functions. Thus, we can consider
different cases depending on which of the correspond-
ing linear functions is larger and which is smaller.
Each case is therefore described by a system of in-
equalities between linear functions, i.e., by a system

of linear inequalities. In each case, both expressions
(a&b)& c and a & (b& c¢) are linear, hence the dif-
ference between these expressions is also linear. To
prove that the absolute value of this difference cannot
exceed a - (1 — a)/2, we must prove two conclusions:

e that this difference cannot be larger than
a-(1—a)/2, and

e that this difference cannot be smaller than
a-(1-a)/2.

For each of these conclusions, we must prove that the
system of linear inequalities formed by inequalities
describing the case and the inequality describing the
difference (a & b) & ¢ — a & (b& ¢) is inconsistent.

For this proof, we will use the Fourier—Motzkin elim-
ination method (see, e.g., [5]). In this method, we
eliminate the variables one by one. Specifically, we
pick one variable z, and then describe each inequality
containing this variable in an equivalent form z < ...
or ... < z. The value z satisfying all these inequali-
ties exists if and only if each lower bound for = does
not exceed (or is smaller, depending on whether the
bound is strict or not) each upper bound for z. These
inequalities between the bounds + the original in-
equalities that did not contain z form a new system
of linear inequalities. This new system is consistent
if and only if the old system was consistent — but
which contains one fewer variable.

After eliminating the variables one by one, we get
the desired contradiction.

4°. Let us illustrate this general idea on a single case
— the case that contains the above values a = 0 and
b=c=0.5.

4.1°. Let us start with the expression (1) for a & b.
The first term in this expression is min(a, b). There-
fore, in accordance with our general idea, we must
consider two possible cases: a < b and a > b. We
will consider only one case: when

a<b. 4)
In this case, min(a,b) = a.

The next term in min(a, 1 —b). We therefore have to
consider two subcases: when a < 1-b (i.e., a+b < 1),
and when a + b > 1. We will consider the subcase

a+b<1 (5)



For this subcase, max(a,1 —b) = 1 — b. For this
subcase, also 1 —a > b, hence max(1 — a,b) =1 —aq,
and max(a, b) = b (since we are considering case (4)).
Thus, the expression

min(max(a, 1 — b), max(1 — a,b), max(a, b))

takes the form min(1—b,1—a,b). Due to (4), we have
1—b <1 — a, hence this expression takes the form
min(1 — b,b). The value of this expression depends
on whether b < 1 — b, i.e., equivalently, whether b <
0.5. We will have to consider both subsubcases. To
illustrate our approach, we consider the subsubcase
when

b < 0.5. (6)
In this case, a&b=a-a+ (1 —a) - b.

When b < 0.5 and a < b, the automatically a < 0.5
and hence a+b < 1. Hence, to describe this subcase,
it is sufficient to consider only the inequalities (4) and

(6)-

4.2°. Similarly, when describing b & ¢, we consider
the case when
b<e, (7)

and
c<0.5. (8)

In this case, b&c=a-b+ (a—a)-c.
4.3°. Let us now find the expression for (a & b) & c.

4.3.1°. The first term in this expression is propor-
tional to min(a&b,c). We know that in our case,
a&b=a-a+ (1 —a)-b, and that b < ¢ and (since
a < band b < ¢) also a < ¢. Multiplying the inequal-
ity a < ¢ by a and the inequality b < ¢ by 1 — a and
adding the resulting inequalities, we conclude that
a-a+ (1—a)-b < c, hence the minimum is equal to
a&b=a-a+(1-a)-b.

4.3.2°. The second term in the desired expression is

proportional to the minimum of max(a&b,1 — ¢),
max(1l — (a&b), c), and max(a & b, c).

For the first of these max terms, from a < b and
b < 0.5, we conclude that a < 0.5 and therefore,
that a&b=a-a+ (1 —a)-b < 0.5. Since ¢ < 0.5,
we have 1 — ¢ > 0.5 and therefore, a &b <1 — ¢, so
max(a&b,1—c)=1—c>0.5.

Similarly, max(l — (a&b),c¢) = 1 — (a&b) > 0.5.
We already know that in our case, a&b < ¢, so
max(a&b,c) = ¢ <0.5.

Of the three max terms, one (¢) is < 0.5, and the
other two are > 0.5. Therefore, the smallest of these
three terms is c.

4.3.3°. Now, we can get the final expression for
(a&b)&c: it is

(a&b)&c=a-(a&b)+(1—a)-c=
o -a+a-(1-a)-b+(1-a)-c

4.4°. Let us now find the expression for a & (b&c).

4.4.1°. The first term in this expression is propor-
tional to min(a,b& c), where b& c = a-b+(1—a)-c.
Since a < b and a < ¢, we conclude (similarly to Part
4.3.1 of this proof) that a < a-b+ (1 — a) - ¢ and
therefore, the desired minimum is equal to a.

4.4.2°. The second term in the desired expression is
proportional to the minimum of max(a,1 — (b&c)),
max(1l—a,b& c), and max(a, b & c). Similarly to Part
4.3.2 of this proof, by comparing values with 0.5, we
conclude that this minimum is equal to

min(l — (b&c),1 —a,b&c) =b&ec.

4.4.3°. Now, we can get the final expression for
a& (b&c): it is

a& (b&c)=a-a+(1—a) - (b&c) =
a-at+a-(1—a)-b+(1-a)-c

4.5°. Subtracting the above
(a&b)&c and a& (b&c), we conclude that
the difference is equal to a - (1 — a) - (¢ —a). To
illustrate our approach, let us show that the system
consisting of linear inequalities (3), (4), (6), (7), (8),
and

expressions for

a-l-a)-(c—a)>a-(1-a)/2, 9)
is inconsistent.

First, let us simplify this system. We do not need
all the inequalities (3): since a < b and a < ¢, it is
sufficient to require that @ > 0, then automatically
b > 0 and ¢ > 0. Similarly, since b < 0.5, ¢ < 0.5,
and a < b, we automatically get a < 1, b < 1, and
¢ < 1. Thus, the only inequality left from (3) is:

a>0. (3a)

Re (9): if @ = 0 or @ = 1, we get known associative
operators, so we are only interested in the values



a € (0,1). For these values, the product a- (1 —a) is
positive. Dividing both sides of (9) by this product,
we get an equivalent inequality

c—a>0.5. (9a)

Let us now eliminate variables — starting with ¢ —
from the resulting system (3a), (4), (6), (8), and (9a).
There are three inequalities containing c¢: b < ¢ (7),
¢ < 0.5 (8), and to which ¢ > a+ 0.5 (9a). So, we
have two lower bounds for ¢: b and a + 0.5, and one
upper bound — 0.5. According to the general algo-
rithm, we require that every lower bound must be
smaller than every upper bound. This leads to two
new inequalities: b < 0.5 (which is already covered
by the inequality (6)) and

a+0.5<0.5, (10)

or, equivalently, a < 0.

There is a clear contradiction (inconsistency) with
(3a).

Comment. In this particular case, we could get this
inconsistency easier, but we wanted to show how the
general variable elimination approach works.

5°. Due to size limitations, we cannot present here
the proofs for all cases, but we hope that the reader
gets a good understanding of how this proof was
done.

We have analyzed all possible cases, and in all
the cases, Fourier—Motzkin elimination method does
prove the desired inequalities. Thus, the theorem is
proven.

Acknowledgments

This work was supported in part by NASA under
cooperative agreement NCC5-209 and grant NCC2-
1232, by the Future Aerospace Science and Tech-
nology Program (FAST) Center for Structural In-
tegrity of Aerospace Systems, effort sponsored by
the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF, under grants num-
bers F49620-95-1-0518 and F49620-00-1-0365, and
by NSF grants CDA-9522207, ERA-0112968 and
9710940 Mexico/Conacyt.

The authors are very thankful to the anonymous ref-
erees for their useful comments.

References

[1] L. Hurwicz, A criterion for decision-making un-
der uncertainty, Technical Report 355, Cowles
Commission, 1952.

[2] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy
Logic: Theory and Applications, Prentice Hall,
Upper Saddle River, NJ, 1995.

[3] H. T. Nguyen and V. Kreinovich, “Nested In-
tervals and Sets: Concepts, Relations to Fuzzy
Sets, and Applications”, In: R. B. Kearfott
and V. Kreinovich (eds.), Applications of In-
terval Computations, Kluwer, Dordrecht, 1996,
pPp- 245-290.

[4] H. T. Nguyen and E. A. Walker, First Course in
Fuzzy Logic, CRC Press, Boca Raton, FL, 1999.

[5] A. Schrijver, Theory of Linear and Integer Pro-
gramming, Wiley, New York, 1986.

[6] R. Trejo, V. Kreinovich, I. R. Goodman, J. Mar-
tinez, and R. Gonzalez, “A Realistic (Non-
Associative) Logic And a Possible Explanations
of 7+ 2 Law”, Int’l J. Approzimate Reasoning,
2002, Vol. 29, pp. 235-266

[7] I. B. Tiirkgen, “Computing with Descriptive and
Veristic Words: Knowledge Representation and
Reasoning”, In: P. P. Wang (ed.), Computing
with Words, Wiley, N.Y., 2001, pp. 297-328.

[8] T. Whalen and C. Broenn, “Hurwicz and regret
criteria extended to decisions with ordinal prob-
abilities”, Proc. NAFIPS’90, 1990, pp. 219-222.

[9] T. Whalen, “Interval probabilities induced by
decision problems”, In: R. R. Yager, J.
Kacprzyk, and M. Pedrizzi (Eds.), Advances in
the Dempster-Shafer Theory of Evidence, Wiley,
New York, 1994, pp. 353-374.

[10] Q. Zuo, 1. B. Tiirksen, H. T. Nguyen, and
V. Kreinovich, “In expert systems, even if we
fix AND/OR operations, a natural answer to a
composite query is the interval of possible de-
grees of belief”, Reliable Computing, 1995, Sup-
plement (Extended Abstracts of APIC’95: Int’l
Workshop on Applications of Interval Computa-
tions, El Paso, TX, Febr. 23-25, 1995), pp. 236—
240.



	University of Texas at El Paso
	DigitalCommons@UTEP
	5-1-2002

	Selecting a Fuzzy Logic Operation from the DNF-CNF Interval: How Practical are the Resulting Operations?
	I. B. Turksen
	A. Esper
	K. Patel
	Scott A. Starks
	Vladik Kreinovich
	Recommended Citation



