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Abstract

In many engineering problems, we want a physical characteristic y to
lie within given range Y; e.g., for all possible values of the load x from 0
to xo, the resulting stress y of a mechanical structure should not exceed
a given value yo. If no such design is possible, then, from the purely
mathematical viewpoint, all possible designs are equally bad. Intuitively,
however, a design for which y < yo for all values z € [0,0.99 - o] is “more
probable” to work well than a design for which y < yo only for the values
x € [0,0.5 - zo]. In this paper, we describe an interval computations-
related formalization for this subjective notion of probability. We show
that this description is in good accordance with the empirical distribution
of numerical data and with the problems related to estimating the lifetime
of the Universe.

Introduction

General problem: the need for subjective probability on finite (and
infinite) intervals. In many engineering problems, we want a physical charac-
teristic y to lie within given range Y; e.g., a stress y of a mechanical structure



should not exceed a given value yg; a temperature y within a chemical reactor
should not exceed a critical value yo after which the walls become damaged,
etc. For most such problems, we know the dependence y = f(x1,...,x,) of this
characteristic y on the design parameters 1, ..., z,, and we know the intervals
x; of possible values of these parameters that correspond to a given design. We
can then use interval computations to find the corresponding range of y. If this
range is completely within the desired range Y, perfect.

But what if no such design is possible? In this case, from the purely math-
ematical viewpoint, none of the proposed designs is completely satisfying, so
all of them are equally bad. Intuitively, however, some designs seems to be
more “probable” to be good for the actual (unknown) values of the parameters
x;. For example, suppose that we have a single parameter x whose interval of
possible values is [0,1], then, intuitively, a design for which y = f(z) € Y for
all values z € [0.001, 1] is more probable to work well than a design for which
y € Y only for the values z € [0,0.5].

How can we describe this subjective notion of probability? This is the main
problem that we will handle in this paper. Specifically, in this paper, we provide
interval computations-related formulas for this probability.

Specific problem: explaining (somewhat counter-intuitive) empirical
results about subjective (and objective) probabilities. To design data
processing algorithms with the smallest average processing time, we need to
know what this “average” stands for. At first glance, it may seem that real-
life data are really “chaotic”, and no probabilities are possible at all: today,
we may apply our software package to elementary particles, tomorrow — to
distances between the stars, etc. However, contrary to this intuitive feeling,
there are stable probabilities in real-life data. This fact was first discovered in
1881 by Simon Newcomb who noticed that the first pages of logarithm tables
(that contain numbers starting with 1) are more used than the last ones (that
contain numbers starting with 9). To check why, he took all physical constants
from a reference book, and counted how many of them start with 1. An intuitive
expectation is that all 9 digits should be equally probable. In reality, instead
of 11%, about 30% of these constants turned out to be starting with 1. In
general, the fraction of constants that start with a digit d can be described
as In(d + 1) — In(d). In this paper, we describe a new interval computations-
related explanation for this empirical fact, and we explain its relationship with
lifetime of the Universe and with the general problem of determining subjective
probabilities on finite and infinite intervals.



2 Subjective Probability on Finite Intervals:
Motivations

Let’s first consider a I-dimensional case, i.e., the case when we are describing
the value of only one physical quantity z. Our goal is to describe, for the case
when we know that the actual value z is within an interval [a, b] (and no other
information about z is available), the corresponding (subjective) probability of
different values within this interval. For each subset A C [a, b], the correspond-
ing subjective probability will be denoted by py, 4 (4).

This value may not be defined for some complex sets A, but we want it to
be well-defined at least for every subinterval [c,d] C [a,b]. In other words, we
require that once we know that x € [a, b], and [¢,d] C [a, b] is a subinterval of the
interval [a, ], then there is a subjective probability pi, s([c,d]) that p € [c,d].
Of course, once we know that € [a,b], the probability that = € [a,b] should
be 1, i.e., pap)([a,b]) = 1.

Since the probability to get values outside [a, ] is 0, in principle, we can de-
fine pr, 41([c, d]) for all intervals [c, d], not only for subintervals of [a, b]: namely,
we can define this probability as the probability for 2 to be within the intersec-
tion [a, b] N [e, d].

What are the natural requirements on such probability measures?

Consistency. The first requirement is consistency between different measures.
Suppose that initially, our only knowledge about the physical quantity x is that
its value belongs to an interval [a, b]. Then, we made an additional measurement,
and as a result of that measurement, get a smaller interval [c,d] for the same
quantity. The initial subjective probability that z € [c, d] was piq 5 ([c, d]). What
we did by adding the new knowledge is we deleted the values from the semi-open
intervals [a, ¢) and (d, b] from the list of possible values, so the new probabilities
of these values are now 0. We did not, however, provide any new information
about the probability of the values inside [¢, d]. Hence, it is natural to describe
the new probabilities pj. 4(A) as conditional probabilities under the condition
z € [c,d], ie., to require that p4(A) = p(A|z € [c,d]). The conditional
probability P(A|B) is defined as P(A N B)/P(B). Therefore, for every set A,
we have the following requirement:

PagAnled)

Ple.d)(4) = Plat)([e, d])

Shift-invariance. The second natural requirement is shift-invariance. The
values a, b, etc, are usually obtained by measurements. If we change the starting
point of the measurement (time and temperature are good examples where such
a change is possible), then all the measured values are shifted (z — z + ¢ for
a fixed ¢). This is a formal change that does not affect our knowledge, like a
change from Kelvin to centigrade in measuring temperature. Therefore, it is



natural to assume that the subjective probabilities do not change under this
change.

For example, suppose that we know that (in centigrade) the temperature
is from the interval [0, 50], and we are interested in the subjective probability
that the temperature is actually from the interval [0,20]. This probability is
P[0,50] ([0, 20]). In Kelvin, this same question has a different numerical meaning.
Here, the initial information is that T' € [273,323], and we are interested in the
probability that it this temperature is actually in the interval [273,293]. So, the
probability of the same event can be described as pja73,323]([273,293]). The two
expressions for probability of the same event must coincide, i.e., pjg,50]([0,20]) =
P[273,323] (1273, 293)).

In general, we must have the shift-invariance condition pp,(X) =
Platc,b+c] (X + C).

Unit-invariance. The third requirement is unit-invariance. If we change the
unit in which we measure the physical quantity (i.e., go from inches to cen-
timeters), then, the numerical values of this quantity change as z — X -z
for some A > 0 (= the ratio of the old and the new units). The probabili-
ties must not change under this change either. So, we arrive at the formula
Pla,0)(X) = Paaas (A X).

As a result, we arrive at the following definitions:

3 Subjective Probability on Finite Intervals:
Definitions and the Resulting Description (1D
Case)

In this paper, we will use the following standard definitions: (see, e.g., [11, 15]):

Background definitions. For a given set X, a class A of subsets of X is
called a o-algebra (o-field) if it is closed under countable union and complement
(hence, under countable intersection). A probability space (X, A, P) is a triple
consisting of a set X, a o-algebra A of subsets from X, and a probability measure
P, i.e., a o-additive mapping P : A — [0,1] for which P(X) = 1. Elements of
A are called measurable sets.

We will follow the tradition of probability theory and consider only complete
probability spaces, i.e., spaces for which every subset A C B of any set B of
probability 0 (P(B) = 0) also belongs to B and has probability 0.

By an interval, we will mean a non-degenerate closed interval [a,b] (i.e.,
an interval for which a < b). For an arbitrary n, by a box, we mean a set
[a1,b1] X ... X [an,by], where [a1,b1],...,[an,bs] are intervals.

The standard Lebesgue measure on IR™ will be defined by w,. The 1D
Lebesgue measure will be also called a length, the 2D measure will be called



an area, and a general n-dimensional measure will be called a volume.

Definition 1. By a 1D subjective pre-probability, we mean a function p that to
every interval [a, ], puts into correspondence a probability space (IR, Ajg 4, Pla,b])
for which the value pr, p1([c,d]) is defined for all intervals [c,d], and the prob-
ability measure p,y) is localized on the interval [a,b] (i.e., ppa4([a,b]) = 1).

Definition 2. We say that a 1D subjective pre-probability p is consistent if for
arbitrary intervals [a,b] and [c,d], and for an arbitrary set X € Ay q), we have

XN [C7 d] € A[a,b] and Pla,b] (X N [Ca d]) = p[a,b]([c7 d]) . p[c,d](X)'

Comment. In particular, if pj, 4)([c, d]) > 0, we get the above-motivated formula

Pay(X e d)

Pea(X) = =) " d)

Background definition. For a set X C R and a real number c, the shift X +c¢
is defined as {x +c|z € X} and the product c¢- X is defined as {c-z |z € X}.

Definition 3. A 1D subjective pre-probability p is called shift-invariant if for
every interval [a,b], for every real number c € R, and for every set X € Af,y),
the shift X + c belongs to Ajaqc bt and Pla5)(X) = Plate,pte) (X + €)-

Definition 4. A 1D subjective pre-probability p is called unit-invariant if for
every interval [a,b], for every A € R (XA > 0), and for every set X € A}y, the
product X - X belongs to Apx.q,x5) and pla,5)(X) = ppr.aas(A - X).

Definition 5. 1D subjective pre-probability p is called 1D subjective probability
if it is consistent, shift-invariant, and unit-invariant.

It turns out that the above requirements uniquely describe subjective probabil-
ity:

Proposition 1. If p is a subjective 1-dimensional probability, then for every
two intervals [a,b] and [c,d], we have

_ alle il )
Plap)([e,d]) = pa(fa,b])

Reminder. By u1(X), we denoted the length of the interval X.

(For readers’ convenience, all the proofs are placed in the special Proofs section.)

Comment 1. In Proposition 1, we started with the situation in which we know
nothing about the probability of different values = € [a, b], and we used natural
symmetry requirements to uniquely determine these probabilities. This result



is not unexpected: we started with reasonable conditions and we ended up with
reasonable probabilities.

The main reason why we explicitly formulated this result (which, by itself,
is not very unsurprising) is to show that the symmetry ideas are indeed in good
accordance with common sense. We hope that this makes our further use of
these ideas — in less predictable situations — more convincing.

The fact that symmetries can help in case of uncertainty is no accident; we
have used symmetry in our previous interval-related papers:

In [18], we used symmetry to find the optimal selection of a side to bisect.

In [23], we used symmetry to select an optimal formula for the so-called
“e-inflation”.

In [21], we used symmetry to optimally select a sub-box.

In [25], we used symmetry for several other computational problems.

Comment 2. We get the same uniform distribution as in Proposition 1 if we
use a Maximum Entropy approach (see, e.g., [16, 20, 22]), i.e., select, among
all possible probability distribution on the interval [a,b], a distribution with
the largest possible entropy — [ p(z) - log(p(z)) dz. This coincidence is not
surprising, because the maximum entropy criterion is clearly shift- and unit-
invariant.

Comment 3. The use of uniform distributions is also in line with the recom-
mendations of several metrological (= measurement-related) organizations that
suggest to use uniform distribution if the only information we have is that the
measured value z belongs to an interval [a, b] [4, 5, 35]; see also [3].

4 Applications: 1D Case

The natural uniform distribution has been used to describe subjective probabil-
ity of different subintervals in numerous areas.

Earthquake engineering. In [7], uniform distributions are used to gauge the
probability with which different design are earthquake-proof.

Technical diagnostics and manufacturing. In [17, 26, 27], uniform dis-
tribution is used to describe the probability that the value z of the physical
parameter about which we only know that z € [a, b] actually exceeds the criti-
cal value zg (when a < zg < b).

Material science. In [24], the uniform distribution is used to select a material
that has the largest probability of having thermophysical properties within a
desired range.

Metrology. In [24], the uniform distribution is used to select a sensor that has
the largest probability of covering the desired range of values.



Lifetime of the Universe and similar problems. An interesting use of
uniform distribution in problems like estimating the lifetime of the Universe
comes from R. Gott [10]. Gott’s main idea is as follows. Suppose that we are
witnessing some process that started at a moment 5 (not necessarily known)
and that will end at the moment ¢, (also not necessarily known). In accordance
with the above result, the current observation time ¢ is uniformly distributed
on the interval [ts,t.]. Therefore, the probability that ¢ happens to be in the
first 5% of this interval (i.e., in the interval [ts,ts + 0.05 - (t. — t5)]), is equal
to 5% (5% is just an example, any other small value will do). So, with 95%
probability, the current moment of time ¢ is later than ¢, + 0.05 - (t. — ts)-
Suppose now that we know ¢, and ¢, but we do not know t.. We have already
argued that with a 95% probability, ¢ > ¢; + 0.05 - (te — ts). This inequality
leads to t —ts > 0.05- (te — ts) and ¢t —ts < 20- (t —t5). In other words, with a
95% probability, the total lifetime ¢, — , of a process does not exceed 20 times
its current age. Here are some examples of Gott’s conclusions:
For the humanity (current age = 200,000 years), Gott concludes that with
a 95% probability, its lifetime will not exceed 20 - 200,000 = 4 million years.
For the Universe (current age ~ 20 billion years), with a 95% probability,
Gott’s conclusion is that its lifetime will not exceed 20 - 20 = 400 billion years.
For the computer era (started in 1994, ~ 50 years old), Gott’s conclusion is
that it will probably last for < 1000 more years.

5 Subjective Probability on Multi-D Finite In-
tervals: Definition and the Resulting Descrip-
tion

Comment. Let’s now consider a multi-dimensional case, i.e., the case when we
are describing the values of several physical quantities z1,...,z,. In this case,
interval information can be described by a boz B = [a1,b1] X ... X [an, bp].

On each box B, we want to define a probability measure pp.

Definition 6. By a n-dimensional subjective pre-probability, we mean a func-
tion p that to every n-dimensional box B = [a1,b1] X ... X [an,by], puts into
correspondence a probability space (R™, Ag,pg) for which the value ps(C) is
defined for all n-dimensional boxzes C, and the probability measure pp is localized
on the box B (i.e., pp(B) =1).

Definition 7. We say that an n-dimensional subjective pre-probability p is
consistent if for arbitrary n-dimensional boxes B and C, and for an arbitrary
set X € Ac, we have XN C € Ap and pp(X N C) = pp(C) - po(X).

Comment. In particular, if pg(C) > 0, we get a formula
_ PB (X n C)



that is similar to the above 1D formula.

Background definition. For a set X C IR™ and a vector ¢ € R™, the shift
X +Cis defined as {f+ | & € X} and the product ¢- X is defined component-

wise, as {€- & |Z € X}, where ¢ 7% (c1-T1,---,0n - Tn).

Definition 8. An n-dimensional subjective pre-probability p is called shift-
invariant if for every n-dimensional box B, for every vector ¢ € R™, and for
every set X € Ap, the shift X + ¢ belongs to Ap,z and pp(X) = ppyz(X + ).

Definition 9. An n-dimensional subjective pre—probabili_z;y p is called unit-
invariant if for every n-dimensional box B, for every vector A € IR™ with positive
components, and for every set X € Ap, the product X - X belongs to As p and

pe(X) = ps (X - X).

Definition 10. An n-dimensional subjective pre-probability p is called 1D sub-
jective probability if it is consistent, shift-invariant, and unit-invariant.

Comment. Motivations for these requirements are similar to the motivations
for the 1-dimensional case: shift means changing the starting points of all n
quantities, and unit-invariance means changing n measuring units.

Proposition 2. If p is a subjective n-dimensional probability, then

_ m(BNC)
ps(0) = fin(B)

Reminder. By pn(X), we denoted the volume (n-dimensional Lebesgue mea-
sure) of the box B.

6 Applications: Multi-D Case

Motivation. 1D subjective probabilities are used to compare the value known
with interval uncertainty with a threshold.

In many real-life situations, we need to compare interval values with each
other. For example, control rule bases often include rules like “if the temperature
a is higher than the temperature b, then open valve 1, else open valve 2.”
In practice, after measurements, we only have intervals a and b of possible
values of a and b. If the corresponding two intervals intersect, then none of the
temperatures is guaranteed to be higher than another.

On a box a x b, we have a naturally defined (subjective) probability. A
natural idea is therefore to choose an interval for which the probability that
a > b is greater than the probability that b > a, i.e., the probability

Paxb({(a,b) [a > b})



that a > b is greater than 1/2.

Another possibility is to take into consideration that the inequality a > b
is equivalent to a — b > 0. Since we know that a € a and that b € b, we can
conclude that the difference z % a — b belongs to the interval a —b. So, as the
desired probability, we can take the conditional probability that the number z is
non-negative under the condition that € a—b, i.e., the conditional probability
pafb[oa OO)

It turns out that both ways lead to the same selection:

Proposition 3. For every two intervals a = [a,a] and b = [b,b], the following
three conditions are equivalent to each other:

i) pa—bl0,00) > 1/2 for 1-dimensional subjective probability p.
ii) paxb({(a,b

)|a >b}) > 1/2 for 2-dimensional subjective probability p.

Comment 1. This criterion is actually used in a expert system shell FEST
described in [34]. According to this criterion, out of several values known with
interval uncertainty, we select a one for which the midpoint is larger (if we are
looking for a maximum).

Comment 2. The above idea means that even if we have a 50.1% probability
that a is better than b, we reject b and choose a. In many cases, we do not want
to make a rejection decision on such weak a basis. So, we may choose a value
po > 1/2, and reject an alternative c only if there exists another alternative a
with P(a > b) > po.

To be able to make these choices, we must be able to compute the corre-
sponding probabilities. The formulas are provided by the following proposition:

Proposition 4.

i) For 1-dimensional subjective probability p,

a—>b
a—bl0, = -
Pabl0,00) = O T
ifa>b and 0 else.
ii) For 2-dimensional subjective probability p,
L+15L+1;

axb({(@,0) [a> b)) = 2212
pasn({(@D)|a > b)) = 2

where I, & (1/2) max(0, min(a, b)—max(a, b))?, I, def (b—b)-max(0,a—b),
and I; & (@—a) -max(0,a — b).



Comment 1. Part ii) was first proved in [34].

Comment 2. Tt is worth mentioning that for pg # 1/2, these formulas are
different. Therefore, unless we take pg = 1/2, the two ways to define probability
lead to different sets of solutions. For example, for a = [1,3] and b = [0, 2], the
first formula leads to 0.75, and the second one to 0.875.

Comment 3. For the first formula, we can get an explicit criterion for choosing
the best alternative a:

Definition 11. Let A be a family of intervals. Assume that a real number
Do € [1/2,1] is fized. We say that an element a € A is the possibly best interval
with probability > po if for every b € A (b # a), the probability pa_n[0,0) is
> Po-

Proposition 5. For every family A of intervals, the interval a € A is the
possibly largest interval with probability > po if and only if

po-a+(1—po)-a> sup ((1—po)-b+po-b).
beAb#a

Comment. In some cases, the possible values of the objective function do not
form an interval; for example, if we have finitely many different possibilities
each of which leads to an interval of possible values, then the set of all possible
values of f(a) is a union of finitely many intervals.

Another case when such a union appears is the case of expert systems [31, 34],
when an expert may say that the value of a quantity a belongs to a certain
interval a, and that it does not belong to another interval b C a. In this case,
the resulting knowledge is that a belongs to the set a—b = [a,a] —[b, b], which is
the union of two intervals [a, b]U[b,@]. If we have several negative statements, the
resulting set of possible values may be a union of more than two non-intersecting
intervals.

In these cases, to compare the choices of a and b, we can compare these
sets of possible outcomes. In [34], a probabilistic approach is generalized to this
case. Namely, if we know the set A of possible values of a and the set B of
possible values of b, then we can define the probability of a > b as follows:

First, we choose the intervals a and b that contain A and B —e.g., as interval
hulls of the sets A and B.

Then, we define the desired probability as the conditional probability that
a > b on the condition that a € A and b € B, i.e., as

a,b)|la€ A&be B&a > b})
paxb(A X B) ’
where p is the subjective 2-dimensional probability.

This definition uses the intervals a and b, but the result turn out to be
independent on them.

p(a > p) 2 Peelll

10



Definition 12. For every two Lebesgue measurable bounded sets A, B C IR and
for every two intervals a D A and b D B, we define

def Paxb({(a,b)|a€ A&kbe B&a> b})

n(A> B
Pab ) = Paxb(A x B)

Proposition 6. For every two Lebesque measurable bounded sets A,B C IR
and for every two intervals a O A and b D B, the value pan(A > B) defined in
Definition 12 is equal to

def Hz({(a,b) € Ax B|a > b})

P(42B) = pa(A) - p(B)

Reminder. py denotes a k—dimensional Lebesgue measure: length for k£ = 1,
and area for k = 2.

Comments 1. The proof follows directly from the formulas for subjective 2-
dimensional probability.

Comment 2. For the case when both A and B are finite unions of intervals,
an explicit formula for P(A > B) is given in [34]. Namely, if we combine
intersecting intervals into a larger interval that they constitute, we can represent
each of the sets A and B as a finite union of non-intersecting intervals. Then,
the following formula applies:

Proposition 7. [34] If

A=Oaz~ and B = Obj
i=1 j=1

(where a; Na; =b;Nb; =0 for i # j), then
Pz 5= Y3 ek
i=1 j= 1 (
where for arbitrary two intervals a and b,

L(a,b) dﬁf% max (0, min(a@, b) — max(a, b))*+

(b —b) - max(0,a@ — b) + (@ — a) - max(0,a — b).

Comment. The proof is pretty much straightforward (see proof of Proposition
4). For details, one can see [34].

11



7 Problems with the Above Formulas for Sub-
jective Probability

Mathematical problem: how to generalize these formulas to the infi-
nite case? It is not immediately clear how to generalize this approach to the
case when instead of a finite interval, we have an infinite (or at least very large)
interval, i.e., a semi-line. Let us give an example. Suppose that the condition
that we want to satisfy is a < ag, and that we know that a > 1. What is the
“subjective probability” that the condition a < ay is satisfied? Le, if we use the
above notation, what is the probability pj1,o0)([1,a0])?

An infinite interval [1,00) is a limit case of a finite interval [1, N] when
N — 00. So, a natural idea is to apply the above-described approach to compute
the probability p(N) = pp1,n]([1,a0]) and then tend to the limit N — oo.
Unfortunately, this idea does not work: due to Proposition 1,

_ ag — 1
- N-¢’
and so, in the limit, we get probability 0.

p(N)

Physical problem: lifetime of the Universe. This mathematical argument
can be easily reformulated in commonsense terms. Let us assume that we live
in an infinite Universe that starts at time 0 and goes on and on. If the Universe
is 1 billion years old, then according to Gott’s argument, with probability 95%,
we are not in its first 50 million year. If the Universe is 100 billion years old,
then with the same probability, we cannot be in its first 5 billion years. As we
increase the lifetime, these first 5% spread to the entire Universe. We therefore
arrive at a counter-intuitive conclusion that with a probability 95%, we cannot
be in any time of the Universe. The same conclusion can be made if instead of
95%, we take 99.9%, etc.

Practical problem: Benford’s law. This problem with the lifetime of the
Universe may look somewhat theoretical: after all, in modern physics, the pre-
vailing view is that the Universe is finite (it should be mentioned that several
respected cosmologists believe that the Universe may turn out to be infinite).
However, there is another example when the above approach does not work
well: the problem of dirty pages of logarithm tables. In 1881, Simon Newcomb,
a well-known astronomer, noticed that the first pages of logarithm tables (that
contain numbers starting with 1) are more used than the last ones (that contain
numbers starting with 9) (for a detailed description and references, see [14]). To
check why, he took all physical constants from a reference book, and counted
how many of them start with 1. If real numbers representing physical constants
were distributed uniformly, we would expect all 9 possible first digits appear
with the same probability of ~ 11%. In reality, instead of 11%, about 30% of
these constants turned out to be starting with 1. In general, the fraction of
constants that start with a digit d can be described as In(d + 1) — In(d).
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This empirical fact was later rediscovered by F. Benford [2] and is therefore
known as Benford’s law.

A similar law describes not only physical constants, it also describes different
types of data ranging from stock exchange to census data to accounting-related
numbers. Benford’s law is not simply a curious empirical phenomenon, it has
been successfully used to, e.g., uncover accounting fraud: actual numbers satisfy
this law, while the cooked up data usually follow the uniform distribution. It is
therefore important to figure out why this law is so frequent in real life.

Benford’s law: additional problem and attempts to solve it. This prob-
lem is more difficult that one might think because not only the corresponding
distribution is different from the seemingly natural uniform distribution, it is
difficult to figure out what distribution we have at all. Several authors (see,
e.g., [29, 9, 30]) deduced this formula from the requirement similar to our unit-
invariance (which they call scale-invariance). Crudely speaking, they deduce
the formula p([a,@]) = const - (In(a) — In(a)). We say “crudely speaking” be-
cause In(z) — oo as £ — o0, so the above formula cannot describe an actual
probability distribution; in reality, the authors use some tricks:

In [29], only the invariance of the digit distribution is required.

In [9], p is defined as a limit of probability measures, and invariance is
formulated for this limit — which is not a probability measure.

In [30], p is defined as a finitely additive measure that is not o—additive.

In [6, 12], the logarithmic distribution is deduced from the following fact: the
values of the physical constants are usually obtained by processing data, i.e.,
by applying several (usually, many) arithmetic operations to the initial data.
It turned out that if we start with some random numbers, and apply many
(n) arithmetic operations, then as n — oo, the distribution of the first digit of
the result approaches the logarithmic distribution. Therefore, the logarithmic
distribution is a good approximation for large n.

Probably the most mathematically satisfying derivation comes from consid-
ering a collection of different probability distributions instead of a single one
[13, 14].

What we are planning to do. In this paper, we describe a new interval
computations-related explanation for Benford’s law, and we show how this law
is related to the general problem of determining subjective probabilities on finite
and infinite intervals.

8 Subjective Probability on Infinite Intervals
It turns out that a natural way to avoid the above problems in the infinite case

is not to require some of the conditions that we had for finite case. Let’s do it
for our problem. Namely, we will skip shift-invariance.
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Background definition. By an infinite interval, we mean a set [a,o0) C IR,
with a > 0.

Definition 13. By a 1D subjective pre-probability on infinite intervals, we
mean a function p that to every infinite interval [a,0), a > 0, puts into corre-
spondence a probability space (R, Ajq,00), P[a,00)) for which the value pq,o0)([c, d])
is defined for all (finite or infinite) intervals [c,d], and the probability measure
Pla,c0) 8 localized on the interval [a,00) (i.e., Plq,00)([a,0)) =1).

Definition 14. We say that a 1D subjective pre-probability p on infinite inter-
vals is consistent if for arbitrary infinite intervals [a, 00) and [c,0), and for an
arbitrary set X € Aj. o), we have X N[c,00) € Ajg00) and Pg 00)(X N[c, 00)) =
Dla,b] ([C, OO)) * Ple,00) (X) .

Comment. In particular, if pj, in sty ([c, 00)) > 0, we get a formula

__ Dla,) (X n [C, OO))
Ple,0) (X) = p[a,oo)([c; )

that is similar to the formulas for finite intervals.

Definition 15. A 1D subjective pre-probability p on infinite intervals is called
unit-invariant if for every infinite interval [a, 00), for every A € R (A > 0), and
for every set X € Afq,o), the product X- X belongs to Afx.q,00) and P[g,0)(X) =
Pix-a,00) ()‘ ) X)

Definition 16. 1D subjective pre-probability p on infinite intervals is called 1D
subjective probability on infinite intervals if it is consistent and unit-invariant.

Proposition 8. For every subjective 1-dimensional probability p on infinite
intervals, there exists a real number q > O such that for ¢ > a,

Moo= (£) - (2)

Pla,c0) ([Ca d]) = Pla,o0) ([Ca d] N [a7 OO))

and in general,

Comment 1. At first glance, it may seem that there is an inconsistency between
this result and Proposition 1. Let us briefly explain why in reality, there is
no inconsistency here. The main result of Proposition 1 is that under certain
reasonable assumptions, two subregions of equal size have equal probabilities.
For infinite regions, in which we can have infinitely many subregions of equal
length, these subregions cannot have equal probabilities: otherwise, the sum of
these probabilities — which should be bounded by 1 — will instead be infinite.
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Therefore, when we deal with infinite regions, we have to abandon some
seemingly natural assumptions. Without these assumptions, we get a more
general expression characterized by a parameter ¢. When ¢ = —1, we get the
expression from Proposition 1, an expression that works well for finite intervals
but for which, for infinite regions, the overall probability becomes infinite. If
we want the overall probability to be finite, we must have ¢ > 0 — in which case
subregions of equal length have different probabilities.

Comment 2. According to Proposition 8, we have a 1-parametric family of prob-
ability distributions, that depends on a parameter q. For a finite subinterval,
the distribution should be approximately uniform, so we expect the value of ¢
to be small. When ¢ is small, we can simplify the expression for probabilities
by expanding this expression into Taylor series and keeping only linear terms
in this expression. For an exponential function, this leads to a=? &~ 1 — ¢ - In(a)
and, therefore,

Placc)([e;d]) = (1 — ¢ -In(c/a)) — (1 = ¢-In(d/a)) = ¢ - (In(d) —In(c)).

This formula is very similar to Benford’s law. Indeed, the following Propo-
sitions shows that the Benford’s law can be thus explained.

Proposition 9. Assume that p is a subjective 1-dimensional probability p on
infinite intervals, and that we know that x € [1,00). Then, there exists a ¢ > 0
such that the probability that the first significant digit in the decimal represen-
tation of x is d is equal to
d?—(d+1)¢
1-10—¢

Comment 1. When ¢ — 0, this probability tends to log;o(d + 1) — log;(d).
Thus, when ¢ is small, Benford’s law is a good approximation for the actual
probability.

Comment 2. In the Proofs section, we provide the proof of this result. In
addition to that proof, we want to give its intuitive explanation. Namely, let’s
compute the conditional probability of z having a leading digit d under the
condition that 1 < z < 10V. Numbers with leading digit d belong to the
intervals

[d,d+1)U[d-10,(d+1)-10)U...

The total probability of belonging to these intervals is equal to the sum of the
probabilities of belonging to [d,d + 1), to [d - 10,(d + 1) - 10), etc. Each of
these probabilities is equal to ¢ - (In(d + 1) — In(d)), and there are N of them,
so we get k- ¢- (In(d+ 1) — In(d)). To get the desired conditional probability,
we must divide this probability by the probability that z < 10V, which is
q-1n(10") = ¢- N -In(10). After division, we get the desired formula.
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9 Applications: Case of Infinite Intervals

In addition to above mentioned accounting applications, Benford’s law is used
in several other areas.

Random number generators. Benford’s law is used in the design of (pseudo-
Jrandom number generators (see, e.g., [19]).

Computer rounding. Benford’s law is used for comparing different roundings
in computer arithmetic, so that we can choose the rounding algorithm for which
the average error (in the sense of the empirical distribution) is the smallest [8].

Computer representation of real numbers. A new computer represen-
tation of real numbers has been designed, that decreases the average rounding
errors (“average” in the sense of this empirical distribution) [6, 32, 33]. This rep-
resentation is called a sli (symmetric level index) arithmetic, and it is defined as
follows: for integers z, we define ¢(x) as follows: ¢(0) = 0, ¢(x+1) = exp(P(x))
(so that ¢(1) = e, ¢(2) = e°, etc). This function ¢ is extended to a function
that is defined for all real numbers and maps R to [1,00). So, a number > 1
can be represented as ¢(r) for some r. Then, an arbitrary real number z is rep-
resented as a triple consisting of a rational number r and two signs, for which
x = +¢(r)*. An interval is represented as by its upper and lower endpoints.

10 Multi-Dimensional Case: Infinite Intervals

Background definition. By an infinite box, we mean a set B = [a1,00) X
... X [ap,00), where a; > 0 for all i.

Definition 17. By an n-dimensional subjective pre-probability on infinite in-
tervals, we mean a function p that to every infinite n-dimensional boxr B =
[a1,00)X...X[an, 00), puts into correspondence a probability space (R™, Ap, pB)
for which the value pp(C) is defined for all (finite or infinite) boxes C, and the
probability measure pg is localized on the box B (i.e., pg(B) = 1).

Definition 18. We say that an n-dimensional subjective pre-probability p on
infinite intervals is consistent if for arbitrary infinite n-dimensional boxes B and
C, and for an arbitrary set X € Ac, we have XNC € Ag and pg(X NC) =

pB(C) - po(X).

Comment. In particular, if po(X) > 0, we get a formula

_ pB(X n C)
pB(C)

that is similar to the formulas for finite boxes.

pc(X)

Definition 19. An n-dimensional subjective pre-probability p on infinite inter-
vals is called unit-invariant if for every infinite n-dimensional box B, for every
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vector X € R™ with positive components, a_@d for every set X € Ap, the product
A~ X belongs to Az 5 and pp(X) = ps g(A- X).
Definition 20. An n-dimensional subjective pre-probability p on infinite inter-

vals is called n-dimensional subjective probability on infinite intervals if it is
consistent and unit-invariant.

Comment. Here, as in the case of finite intervals, unit-invariance means changing
T measuring units.

Proposition 10. If p is a subjective n-dimensional probability, then there exist
positive real numbers qi, . .., g, such that when B = [a1,00) X ... X [ap, 0),

p([c1,di] X ... X [cn,dy)) =
())& )

11 Proofs

11.1 Proof of Proposition 1

For every a € (0, 1], let us denote pjo,11([0, @]) by f(a). This value is defined for
all a € [0,1], because we assumed that all measures p, ) are defined for all the
intervals [c, d].

1°. Since pyg,1) is a probability measure, the function f is monotonically non-
decreasing, and f(0) = 0.

2°. From the condition that the measure pj, ) is localized on the interval [a, b],
we can conclude that f(1) = 1.

3°. As a particular case of a consistency requirement, we conclude that for
arbitrary a € (0,1] and § € (0, 1], we have

P10,11([0, @ - B]) = po,11([0, @]) - pjo,o ([0, @ - B])-

In our denotations, the left-hand side takes the form f(a - 3), and the first
term in the right-hand side takes the form f(a). Applying unit-invariance (with
A = 371), we conclude that the second term in the left-hand side of this equality
is equal to ppo,11([0,3]), i.e., in our notations, to f(B). So, the above equality
takes the form f(a-f8) = f(a) - f(8). In other words, we get a functional
equation for the function f.

4°, This particular functional equation is well known: it has been first solved
in [28], and its most general monotonic solution is [1], Section 3.1.1: f(a) = a?
for some real number q.

17



To complete the proof of the theorem, we must show that ¢ = 1.

5°. To do that, let us now consider another particular case of the consistency
requirement: pjo,11([0.5,0.75]) = pjo,1)([0.5, 1]) - pjo.5,1)([0.5,0.75].

5.1°. Let’s first process the left-hand side and the first term in the right-hand
side. Since p is a probability measure, we have

P[o,1]([0-570-75]) = p[O,l]([OJ 75]) _p[O,l]([070-5)) = f(0-75) - f(0-5) =
0.757 — 0.59.
Similarly, p[o’l]([0.5, 1) =19-0.52=1-0.5%.

5.2°. Due to shift-invariance (with ¢ = 0.5), the second term in the right-
hand side of the equality from 5°. can be proven to be equal to pjg 0.5 ([0, 0.25]).
Applying unit-invariance with A = 0.5, we can now conclude that this expression
is equal to pjo,1)([0,0.5]) = f(0.5) = 0.57.

6°. Substituting the expressions from 5.1° and 5.2° instead of the left- and
the right-hand sides of the equality from 5°, we conclude that 0.759 — 0.59 =
(1-0.57)-0.59, i.e., that 0.759—0.57 = 0.57—0.25%. If we move each negative term
to the opposite side of this equality, we will conclude that 2-0.59 = 0.257+0.759.
Dividing the resulting equality by 2, we get

~0.257 4 0.75¢

0.54
2

7°. There are three possibilities for q¢: ¢ > 1, ¢ < 1, and ¢ = 1. To prove that
q = 1, we must prove that the first two cases are impossible.

7.1°. For q > 1, the function x — 27 is strictly convex (because (z?)" =
g(g —1)z% 2 > 0). Since 0.5 = (0.25 + 0.75)/2, for ¢ > 1, we will have

0.259 +0.754
<—m———.

0.54
2
So, we cannot have ¢ > 1.

7.2°. Similarly, when q¢ < 1, we have (2?)" = g(g — 1)29~2 < 0, so the function
z — x? is concave and therefore,

0.259 +0.754
> 0

q
0.5 5

So, the case ¢ < 1 is also impossible.
7.3°. So, the only possible value is ¢ = 1.
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8°. Hence, f(a) = a? = a. In other words, for every ¢ € [0, 1], pjo,1;([0,¢]) = c.
Therefore, for every interval [¢,d] C [0, 1], we have

P (le dl) = po([0,d]) — pr,1([0,¢]) = d — ¢ = p(le, d]).

The probability measure pyg 1} is localized on [0, 1], therefore, the measure of
any other other interval [c,d] is determined only by this interval’s intersection
with [0,1]. Hence, for an arbitrary interval [c, d], we have

p1([0,1] N [e, d])
pa([0,1]) ‘

So, we have proved the desired formula for [a,b] = [0, 1].

Py dl) = m([0,1]N e, d]) =

9°. The formula for other intervals [a,b] follows from the one that we have
just proved, if we apply shift- and unit-invariance to transform [0,1] into [a, b]
(namely, we first apply a shift with ¢ = a, and then z — A -z with A = b— a).
Q.ED.

11.2 Proof of Proposition 2

1°. If we fix the component intervals of all the variables but one at [0,1], we
get the 1-dimensional measure that satisfies all the conditions of Proposition 1.
Therefore, from Proposition 1, we conclude that

pr([0,1] x ... x[0,1] X [¢;,d;] x [0,1] x ... x [0,1]) =d; — ¢;,

where by I, we denoted the unit box I ef [0,1] x ... x [0,1].

2°. Let’s illustrate the remaining part of the proof on the example of n = 2 (for
n > 2, the proof is quite similar). Suppose that we have two intervals [c;, d;],
and we want to find an expression for p;(B) for a box B = [c1,d1] X [c2, d2].
Due to consistency, we have

pr(B) = p1([0,1] x [ca, d2]) - Plo,1]x[ca,do] ([€1, d1] X [c2, d2]).

Because of 1°, the first factor in the right-hand side of this formula is equal to
p1([cz, ds]) = da2 — ¢3. To compute the second factor, we apply unit-invariance
with Ay = 1 and Xy = (ds — c2)~!. This application leads to

D[0,1]x[ez,da] ([€1, d1] X [c2,d2]) = pr([c1,di] x [0,1]),

i.e., due to 1°, tO Plo,1)x[es,dz]([c1,d1] X [c2,d2]) = di — ¢1. Hence pr(B) =
(d1 - Cl) . (d2 - 62) = NZ(B) QED
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11.3 Proof of Propositions 3—5

Let us first compute the desired probabilities, i.e., prove Proposition 4.

i) The interval a—b has the form [a —b,@—b]. Therefore, according to Proposi-
tion 1, the probability pa—1[0, 00) is either equal to 0 (if @ —b < 0), or, if @ > b,
to p([0,a—b))/m(la—b,a—-d) = (@-b)/@-b—a+b).

ii) ([34]) According to Proposition 2, 2-dimensional subjective probability is
proportional to the area. So, the desired probability is equal to the fraction
whose denominator is the area (@ — a)(b — b) of the rectangle [a, @] x [b,b], and
the numerator is the area of the portion of that rectangle for which a > b. This
area is bordered by the line a = b, and by the sides of the rectangle. The area
consists of the following three parts (some of which may be absent).

The first—triangular—part comes from the intersection [max(a,b), min(a, b)]
of the two intervals; its area is exactly the half of the area of the square (if there
is an intersection at all).

The second part is the part in which @ > b. In this part, all values a are
> b and therefore, > b. Geometrically, this part is a rectangle [b,a] x [b,b] (if it
exists at all, i.e., if @ > b), so its area is equal to (b — b) - max(0,a@ — b).

The third part is the part in which b < a. In this part, all values a are > a
and therefore, > b. Geometrically, this part is a rectangle [b,a] x [a,a] (if it
exists at all, i.e., if b < a), so its area is equal to (@ — a) - max(0,a — b).

Adding up these three areas and dividing by (@—a)(b—b), we get the desired
formula.

Now, we are ready to prove Proposition 3.

i) ¢ iii). Due to part i) of Proposition 4, if @ > b, then p,_p[0,00) > 1/2 if
and only if (@ — b)/(@—b—a +b) > (1/2). Multiplying both sides by both
denominators, we can conclude that 2@ — 2b > @ — b— a + b. Moving all negative
terms to the other side of this inequality, we get the desired equivalent form
@+a>b+b.

This equivalence was proved only under the auxiliary condition @ > b. If
p > 1/2, then this condition is satisfied (else, the probability is 0). So, to
complete the proof of this equivalence, it is necessary to proof that if a+a > b+b,
then @ < b is impossible. Indeed, if the upper bound @ of an interval a is smaller
than the lower bound b of the interval b, then the midpoint (a + @)/2 of a is
definitely smaller than the midpoint (b + b)/2 of b, which contradicts to our
assumption that @+ a > b + b. The equivalence is thus proved.

ii) +» iii). Let us use formula ii) from Proposition 3 to prove that this equivalence
holds for all possible mutual locations of the intervals a and b:

If @ < b, then the probability p (as computed by formula ii)) is 1 (which is
> 1/2), and the midpoint of a is evidently larger than the midpoint of b.

If @ < b, then p = 0 (i.e., < 1/2), and the midpoint of a is smaller than the
midpoint of b.
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If a <@ and b < b, then out of three terms in the numerator of of formula ii)
only one term remains, so p = (1/2)(@— b)?/(a@ — a)(b — b). So, p > 1/2 if and
only if (@— b)? > (@ — a)(b — b). But the length @ — b of the intersection is not
greater than the length of each interval; so,@a —b<@—a,@—b < b—b, and,
therefore, (@ —b)? < (@ — a)(b — b). If the intersection is actually smaller than
one of the intervals, then we get the strict inequality. So, in this case, the only
possibility for the left-hand side can be greater than or equal to the right hand
side is when the intersection is actually equal to both intervals, i.e., when these
two intervals coincide. In this case, the sums a + @ and b+ b coincide. If one of
the ends is smaller, then p < 1/2 and a+@ < b+ b. So, in this case, p > 1/2.

If ¢ > @ and b > b, then, on the one hand, a + @ > b+ b, and, on the
other hand, similarly to the previous case, P(b > a) < 1/2 and therefore,
Pla>b)=1—-P(a>b)>1/2.

There are two remaining case: b C a and a C b. Let us first consider the
first case, when a < b < b < @. In this case, due to the formula ii), the inequality
p > 1/2 is equivalent to

[(1/2)(=b)* + (b= b)(@—b)/[@-a)(b—b)] > 1/2.

Multiplying both sides of this inequality by the denominators of both sides, we
get the following equivalent inequality:

b-b)*+20-b)@-5>@-a)(b-b.

Dividing both sides by the positive number b—b, we get the equivalent inequality
b—b+2(@—b) > a— a. If we do the multiplication, and move all negative terms
to another side, we finally get the desired equivalent inequality @ 4+ a > b+ b.

The proof for the second case, when a C b, is similar. So, in all cases, ii) is
equivalent to iii). Proposition 3 and 4 are proven.

Proposition 5 follows directly from Proposition 4. Q.E.D.

11.4 Proof of Proposition 8

This proof is similar to the proof of Proposition 1. Let us denote pj1 o) ([, o0))
by f(a), where 1 < a < oo. This value is defined for all a, because we assumed
that all measures pj, o) are defined for all the intervals [c, d] (finite or infinite).

1°. Since p[1,«) is a probability measure, the function f is monotonically non-
decreasing, and f(a) — 0 as @ — oo.

2°. From the condition that the measure pp; ) is localized on the interval
[1,00), we can conclude that f(1) = 1.

3°. As a particular case of a consistency requirement, we conclude that for
arbitrary a > 1 and 8 > 1, we have

p[l,oo)([a ) ﬂ: OO)) = p[l,oo)([a7 OO)) ) p[a,oo)([a : ﬂv OO))
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In our denotations, the left-hand side of this equality is f(« - ), and the first
term in the right-hand side is f(a). Applying unit-invariance (with A = 371) to
the second term in the right-hand side, we conclude that the second term in the
right-hand side of this equality is equal to pj1,o0)([8,0)), i.e., in our notations,
to f(B). So, the above equality takes the form f(a-3) = f(a) - f(8).

4°. From the proof of Proposition 1, we already know that the general monotonic
solution of this equation is f(a) = o~ 7. Since f is monotonically decreasing,
we have ¢ < 0. So, if ¢ > 1, then pp; )([c,00)) = ¢ 1.

5°. We are interested in the values of probability for finite intervals [e¢, d], so we
must somehow describe a finite interval in terms of infinite ones. If we simply
take a difference [c,00) — [d, 0), we will get the formula for a measure of a
semi-open interval [c, d):

Pi1.00)([¢,d)) = Pp1,00) ([¢, ) — [d, 00)) =
p[l,oo)([c7 OO)) - p[l,oo)([d7 OO)) =c1-d™.
The formula for the probability of a closed interval [¢,d] can be deduced from

the fact that an interval [¢, d] can be represented as a limit of the monotonically
decreasing sequence of intervals [¢,d + 1/k) with k =1,2,... . Therefore,

: 1

1 —q
lim <d+ —) —c ) =d -1
k—o0 k

The general case follows from unit-invariance. Q.E.D.

11.5 Proof of Proposition 9

The set of all the numbers > 1 whose first digit is d consists of the infinite union
of the intervals
[d,d+1)U[d-10,(d+1)-10)U...

The total probability of belonging to these intervals is equal to the sum of the
probabilities of belonging to [d,d+1), to [d-10, (d+1)-10), etc. The probability
of belonging to [10¥ - d, 10* - (d + 1)) is equal to

(10% - d)=7 — (10F - (d +1))"7 = (10F)9- D =10"%7.D = ¢* - D,
where we denoted ¢ & 10=7 and D &' 47 — (d+ 1)79. So, the sum of these
probabilities is the sum of a geometric progression

D+D-c+D-+...4+4D-F+...

This sum is well known and equal to D/(1 — ¢). This is exactly the desired
formula. Q.E.D.
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11.6 Proof of Proposition 10

This proof is similar to the proofs of Propositions 1, 2, and 9.

1°. If we fix the component intervals of all the variables but one at [1,00), we
get the 1-dimensional measure that satisfies all the conditions of Proposition 9.
Therefore, from Proposition 9, we conclude that for some constants g;,

pr([1,00) x ... x [1,00) X [¢;,00) X [1,00) X ... % [1,00)) =¢; ¥,

where by I, we denoted the simplest infinite box I def [1,00) X ... X [1,00).

2°. Let’s illustrate the remaining part of the proof on the example of n = 2
(for n > 2, the proof is quite similar). Suppose that we have two infinite
intervals [¢;, 00), and we want to find an expression for pr(C) for an infinite box
C = [e1,00) X [e2,00). Due to consistency, we have

p1(C) = pi([1, 00) x [c2,00)) - p[l,oo)x[cz,oo)([cli 00) X [c2,00)).

Because of 1°, the first factor in the right-hand side of this formula is equal to
w1 ([e2,0)) = ¢; ™. To compute the second factor, we apply unit-invariance with
A1 = land Ay = ¢; . This application leads to D[1,00) x[ea,00) ([€1,00) X [€2,00)) =
pr([e1,00) x [1,00)), i.e., due to 1°, t0 P1,00)x[es,00) ([€1,00) X [c2,00)) = ¢ .
Hence p;(B) = (di —c1) - (da —¢2) = ¢; " -y .

3°. To get the formula for finite boxes, we must express a finite box in terms of
infinite ones. Namely, a finite box F' = [¢1,d1] X [¢2, d2] can be represented as an
intersection of two semi-finite boxes F' = F} N Fy, where Fy = [¢1,d1] X [c2,0)
and F» = [c1,00) X [c2, dz]. Since p is a probability measure, we have p(FiNF3) =
p(F1) + p(Fy) — p(F1 U F). So, to compute p(F), it is sufficient to be able to
compute p(F1), p(Fy), and the probability of the union F; U F.

3.1°. The union F; U F, of these two boxes is an infinite box [¢;, 00) X [c2, 00)
for which we already know the probabilities.

3.2°. The set F; can be represented as a difference between the two infinite
boxes, so p(F1) = p([e1,00) X [ca,00)) — p([ea, 00) X [ca,00)) (strictly speaking,
we need to use semi-open intervals, and use a limit procedure as in the proof of
Proposition 9).

3.3°. From these expressions, we will get the desired formula for the probability
measure. Q.E.D.
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