University of Texas at El Paso

Digital Commons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

7-1-2001

Computational Complexity of Optimization and
Crude Range Testing: A New Approach Motivated
by Fuzzy Optimization

G. William Walster

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

b Part of the Computer Engineering Commons

Comments:

UTEP-CS-01-02d.

Published in Fuzzy Sets and Systems, 2003, Vol. 135, No. 1, pp. 179-208; correction 2004, Vol. 141, p.
163.

Recommended Citation

Walster, G. William and Kreinovich, Vladik, "Computational Complexity of Optimization and Crude Range Testing: A New Approach
Motivated by Fuzzy Optimization" (2001). Departmental Technical Reports (CS). Paper 366.
http://digitalcommons.utep.edu/cs_techrep/366

This Article is brought to you for free and open access by the Department of Computer Science at Digital Commons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of Digital Commons@UTEP. For more information, please contact

Iweber@utep.edu.

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/366?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Computational Complexity
of Optimization and
Crude Range Testing:

A New Approach Motivated
by Fuzzy Optimization

G. William Walster! and Vladik Kreinovich?

nterval Technology Engineering Manager

Sun Microsystems, Inc.
16 Network Circle, MS UMPK16-304
Menlo Park, CA 94025, bill.walster@eng.sun.com

2Department of Computer Science
University of Texas, El Paso, TX 79968, USA
vladik@cs.utep.edu

Abstract

It is often important to test whether the maximum max f of a given
B

function f on a given set B is smaller than a given number C. This “crude
range testing” (CRT) problem is one of the most important problems in
the practical application of interval analysis. Empirical evidence shows
that the larger the difference C' — max f, the easier the test. In general,

the fewer global maxima, the easier the test; and finally, the further away
global maxima are from each other, the easier the test. Using standard
complexity theory to explain these empirical observations fails because
the compared CRT problems are all NP-hard. In this paper the analy-
sis of fuzzy optimization is used to formalize the relative complexity of
different CRT problems. This new CRT-specific relative complexity pro-
vides a new and “robust” theoretical explanation for the above empirical
observations. The explanation is robust because CRT relative complexity
takes numerical inaccuracy into consideration. The new explanation is
important because it is a more reliable guide than empirical observations
to developers of new solutions to the CRT problem.

1 Introduction

1.1 Many practical problems are optimization problems

In many real-life situations, it is important to find the best decision, control, or
design. Often the best decision, control, or design is subject to given constraints.
Well defined constraints are said to be crisp, e.g., a certain quantity ¢ must be
between 0 and 1. In other situations, the constraints are fuzzy, e.g., a certain
quantity g should be small. In such situations, all the values x that satisfy fuzzy
constraints form a fuzzy set B; for every x, we can estimate the “degree” to
which z satisfies the corresponding constraints by a real number pp(z) from the
interval [0, 1]; 1 means that we are absolutely sure that x satisfies the constraints,
0 means that we are absolutely sure that it does not, intermediate values describe
different levels of uncertainty. The function which maps x into this degree is
called the membership function of the fuzzy set. The corresponding problem of
finding the best decision, control, or design is naturally formalized as a fuzzy
optimization problem:

e find the values z = (x1,...,2,) for which the given real-valued function
f(x1,...,z,) attains the largest value on the given fuzzy set B.

When constraints are crisp, the problem of finding the best decision, control,
or design is naturally formalized as a constrained optimization problem:

e given a real-valued objective function f(z1,...,z,) of several variables;

e given constraints that define the set B, the feasible region of all the values
z that satisfy them;

e then find the values ¢ = (x1,...,%,) for which f(z1,...,z,) attains the
largest (or the smallest) value on the constraint set B.

Without loss of generality all optimization problems can be formulated ei-
ther as maximizing or minimizing an objective function f by simply changing
the sign of f. To simplify the exposition, except where explicitly noted, the fol-
lowing optimization development is framed in terms of maximizing an objective
function.

1.2 Solving optimization problems requires sophisticated
methods

Because optimization problems are often of practical importance, people have
solved them since ancient times. If there are only a small number of possible
values z, then one can simply check them all to find the best (i.e., the one for
which the objective function attains its largest value). Often, however, these

problems are not easy to solve, even when the constraints are crisp. In most real-
life problems, the number of possible alternatives is so large that it is impossible
to use an exhaustive search. To solve difficult optimization problems, ingenious
algorithms are required that don’t use an exhaustive search.

The practical importance of optimization problems has motivated many such
algorithms to be developed. For example, one of the main reasons for inventing
and developing calculus was the discovery that the maxima of a smooth function
f(x) on a set B are located on the border of this set and at the points x for
which all partial derivatives of f are zero.

New methods of solving optimization problems are constantly being devel-
oped and old ones, improved. In particular, as discussed later in more detail, one
of the most important techniques used to solve optimization problems depends
on computing with intervals.

Progress solving crisp optimization problems helps to solve fuzzy optimiza-
tion problems. Indeed, after the pioneering work [2] of R. Bellman and L. Zadeh
— who formulated the notion of a fuzzy optimization problem — most researchers
formalize fuzzy problems as corresponding crisp optimization problems. The
corresponding crisp optimization problem has an objective function that com-
bines the original objective function f(z) and the membership function ug(x)
of the fuzzy constraint set B.

Forming and computing the new objective function is not difficult. The
difficult part is solving the resulting crisp optimization problem. Thus, any
success developing more efficient crisp optimization algorithms automatically
leads directly to more efficient fuzzy optimization methods.

1.3 Experience solving optimization problems can guide
the development of new algorithms

When developing new optimization methods, researchers can benefit from ex-
perience applying known optimization algorithms to different problems. Before
explaining how experience in the form of empirical evidence is used as an al-
gorithm development guide, consider the following example: It is known that
with more global maxima — i.e., points in a function’s domain were it attains
its maximum value — the more difficult it is to solve the optimization problem.

This experience is the most convincing for optimization techniques that are
variants of a gradient search, which start at an arbitrary point and move in
the direction of the steepest ascent. Gradient methods tend to work reasonably
well when an objective function has a single maximum. However, these methods
sometimes fail to work well when an objective function has several global max-
ima. Indeed, in this case, if large steps are taken, the algorithm may move from
the attraction area of one maximum to the attraction area of another, thereby
confusing the process. Smaller steps can avoid this problem, but will increase
the number of iterations and drastically increase computation time. More global

maxima clearly increase the difficulty of locating all the global maxima of an
objective function.

In general, empirical evidence about problem difficulty comes from experi-
ence solving problems using known tools. With existing tools, some problems
are easy to solve and some are more difficult. It is therefore natural to conclude
that problem difficulty is correlated with difficulty solving them using known
tools.

Algorithm developers can use this empirical evidence as a guide to select
techniques and to select benchmark tests for these techniques. Specifically, it is
reasonable to select:

e techniques that lead to improved performance when added to the known
tools; and

e problems as benchmarks that are observed to be more difficult because
these are the problems for which improved performance will be the most
beneficial.

Often, this natural guidance works well, but not always.

1.4 Empirical evidence can be misleading

The trouble with empirical evidence is that it can be misleading. Breakthroughs
are good examples. Breakthroughs happen when a new approach succeeds that
is inconsistent with existing empirical evidence and even possibly theory.

Linear programming (see, e.g., [34]) is a good example. In linear program-
ming, a linear function ¢ -1 + ...+ ¢y - T, is maximized over the area described
by linear constraints a;1 - 1 + ...+ a@in - T < b;, 1 < i < m. It is known
that, crudely speaking, in the optimal solution, n out of m inequalities must be
equalities.! It therefore seemed natural to develop iterative methods of solving
this problem in which, at every iteration, the vector x exactly satisfies n out
of m inequalities. This method — called the simplex-method — turned out to be
extremely empirically successful.

The simplex method is not perfect, but based on the available empirical evi-
dence, most of the efforts aimed at improving it were restricted to techniques in
which at every stage, x transforms n inequalities into equalities. All attempts to
weaken this restriction only led to a worse algorithm. Then suddenly, completely
new methods were discovered: methods that are, in many cases, much faster
than the simplex method; methods in which, during each iteration, none of the
inequalities are turned into equalities (see, e.g., [8, 10, 34, 36]). The available
empirical evidence was misleading. If researchers had realized this fact, they
might have developed the new faster methods much sooner.

I The proof of this fact is rather simple: If fewer than n inequalities are equalities at a given
point x = z1,...,Zn, then the n variables can be modified in such a way that n equalities
remain true, and the value of the objective function is increased. Thus, the given point cannot
be the maximum.

1.5 To avoid mistakes, theoretically test the correspond-
ing empirically based hypotheses

Empirical evidence is sometimes misleading because it is based on the experience
from applying known tools. An apparently difficult problem may actually be
reasonably simple to solve — using unknown tools.

Since empirical evidence can be misleading, it is important to develop theo-
retical analyses of empirically-derived hypotheses to separate possibly mislead-
ing evidence from the evidence that is theoretically justified.

1.6 The desired theoretical analysis can be difficult

Often, the desired theoretical analysis of empirical hypothesis is difficult. There
are two reasons for this.

The first is very familiar to people in the fuzzy methods community: these
hypotheses are often formulated in words from natural language that are math-
ematically imprecise. For example, a hypothesis may state that problems from
one class are “more complex” than the problems from some other class, without
specifying what “more complex” means. To test such a hypothesis, it must be
precisely formalized.

The second reason is that even when precisely formalized in mathematical
terms, determining whether a formal hypothesis is true or not may be a complex
mathematical task.

1.7 The plan

After advice to readers from the fuzzy and interval communities, two empirically
based hypotheses about optimization problems are presented in Section 2. These
hypotheses are believed by many researchers in the optimization community to
be important, but until now have not been precisely formulated. The reason
these hypotheses are important is explained in Section 3. Section 4 explains
why traditional methods used to precisely formalize similar hypotheses do not
work in this case.

After describing the crude range test (CRT) problem in detail, the solution
is developed. This solution is based on the fact that some computational op-
timization problems stem from real-life problems that are naturally formalized
using fuzzy optimization. As shown in Section 5, fuzzy optimization naturally
provides the additional freedom needed to precisely formalize the two hypothe-
ses of interest. Section 6 demonstrates that similar ideas make sense even for
non-fuzzy practical problems. In Sections 7 and 8, the resulting precisely for-
malized hypotheses are described, and mathematical results are presented that
confirm the two hypotheses. Proofs of these results are presented in Section 9.

1.8 Advice to readers

Because this special issue is devoted to the relation between fuzzy systems and
interval analysis, the authors intend this paper to be useful for readers whose
interest is either fuzzy systems or interval analysis.

1.8.1 Adyvice to fuzzy systems readers

For readers whose primary interest is fuzzy systems, the main mathematical re-
sults of this paper concern the computational complexity of crisp optimization.
These results apply to fuzzy optimization only indirectly, via the fact that the
standard Zadeh-Bellman formulation of fuzzy optimization problems reduces
them to crisp optimization problems with a different objective function. After
new definitions are motivated using fuzzy optimization, the remaining devel-
opments are mathematical, and as such, of limited interest to readers who are
primarily interested in fuzzy optimization.

Nevertheless, new results may be interesting to the general fuzzy systems
community because fuzzy optimization serves as the motivation for the precise
formulation of the required crisp complexity problem. It is unfortunate that
fuzzy systems concepts have not been directly applied more frequently to crisp
(non-fuzzy) numerical methods. A few cases of direct applications are surveyed,
e.g., in [14, 24, 28].

The present application of fuzzy methodology to the (foundations of) non-
fuzzy numerical methods is new. In this case fuzzy systems concepts are applied
to the development process of crisp (non-fuzzy) numerical methods. With better
mutual awareness of fuzzy and non-fuzzy developments by both groups of re-
searchers, the authors hope similar applications will become more commonplace
and benefit both communities.

1.8.2 Advice to interval analysis readers

Readers whose primary interest is interval analysis can skip the fuzzy optimiza-
tion sections in their first reading, and read only about: the problem of precisely
formulating empirical hypotheses; the related optimization problem; the solu-
tion to this problem; and the resulting theorems. Nevertheless, the authors hope
that interval readers are interested in the motivation for the new definitions and
as a result, will read the fuzzy optimization sections.

1.8.3 General comment

The paper is aimed at both fuzzy systems and interval analysis readers. The
authors want readers from both disciplines to understand and appreciate the
results without having to read other textbooks or survey papers. Consequently,
introductory sections contain somewhat more tutorial details than is typical in

a journal article. Readers familiar with definitions and elementary ideas are
welcome to skip these details.

2 Two Important Empirical Hypotheses About
Optimization

In this section, two empirically based hypotheses (observations) about optimiza-
tion problems are presented. Many researchers from the optimization commu-
nity believe these hypotheses to be important (see, e.g., [9]). However, until
now they have not been precisely formalized.

2.1 First Observation: The Closer The Maxima, The
More Difficult the Problem

The first observation is easy to describe. The following observation is mentioned
in the introduction:

Observation. The problem of locating global maxima is easier if there is a
single global mazimum and more difficult if there are several global mazima.

This empirical fact actually has a theoretical explanation that will be described,
in some detail, in Section 8.

Until now, a second related empirical observation, however, has has not been
precisely formalized:

Observation. Locating global mazima is easier if they are widely separated and
more difficult if they are close together.

Hypothesis 1. The closer the global mazima, the more complex the corre-
sponding optimization problem.

A similar observation holds for the solution to systems of nonlinear equations:

Observation. Solving a system of nonlinear equations is easier if this system
has a single solution and more difficult if the system has several solutions.

This empirical fact actually has a theoretical explanation that will also be de-
scribed, in some detail, in Section 8.

Hypothesis 1'. The closer the solutions to nonlinear systems, the more com-
plex the corresponding problem.

2.2 Second Observation: Relative Complexity of Crude
Range Estimation

An optimization problem consists of finding the maximum max f of a given

objective function f over a given set B. As mentioned earlier, in general, this
problem is computationally difficult.

In important situations, however, knowing the ezract maximum is not re-
quired. Instead, it is sufficient to know whether the (unknown) maximum max f

of the objective function f over a given set B is smaller than a given number
C. In other words, determining the exact range [H}Bin 1 max f] (or equivalently,

[— mgx(— 1) , Max f1|) of the function f on the set B is not required. Instead,

it is sufficient to perform a crude range test (CRT) to determine whether the
range of f over B is strictly less than the given value C or not.

Empirical evidence shows that different CRT problems have different relative
complexity:

Hypothesis 2. The larger the difference C' — max f, the easier the problem.

Until now, this observation has not been precisely formalized or justified.

3 Why These Hypotheses Are Important

3.1 The first problem

There seems to be no doubt about the importance of the first hypothesis, be-
cause this hypothesis is directly related to optimization, and optimization is
important.

3.2 Crude range tests (CRTSs)

The importance of the second hypothesis is not as clear. Indeed, from the
practical viewpoint of optimization problems the maximum of the the objective
function is required, together with its location. On the surface it is difficult to
see a meaningful real-life problem that can be naturally formalized into a CRT.

However, CRTs are important because they a critical part of almost every
interval algorithm, including those used to solve optimization problems. Solving
CRTs accounts for the major part of the runtime of most interval algorithms.
The reason is that the flow of control in any interval algorithm with branches
is determined by the results of CRTs.

Therefore, it is no accident that in the keynote talk of the recent biannual
international conference on interval computations and validated numerics [35],
efficiently performing simple CRTs was mentioned as the most important prob-
lem that is currently preventing the application of interval analysis from reaching

its full potential. If the relative complexity of different CRTs can be precisely
formalized, reliable guidance to researchers will exist regarding which CRTs
are simple and which are complex. Researchers can then focus their attention
on relatively simple CRTs that are nevertheless difficult to solve using existing
tools.

To describe, in detail, why CRT problems are important for optimization,
first the importance of verified optimization is described. This is followed by
a simple example of an interval-based verified optimization algorithm that uses
CRTs. Finally, the fact that more sophisticated verified optimization techniques
and most other interval algorithms also use CRTs is briefly mentioned.

3.3 Why verified optimization is often required

Many numerical algorithms for solving optimization problems end up in a local
maximum instead of the desired global one. For example, the above-mentioned
gradient method stops whenever it reaches a point where the gradient is 0 —
sometimes, in a local maximum point.

e In some practical situations, e.g., in decision making, using a local max-
imum instead of a global maximum simply degrades the quality of the
decision but is not, by itself, catastrophic.

e However, in other practical situations, missing a global maximum may be
disastrous.

Consider the following two examples that are naturally minimizing opti-
mization problems:

— In chemical engineering, global minima of an energy function often
describe the stable states of a system. If a global minimum is missed,
a chemical reaction may go into an unexpected state, with possible
serious consequences.

— In bioinformatics, the actual shape of a protein corresponds to the
global minimum of an energy function. If a local instead of a global
minimum is found, the wrong protein geometry can result. The
wrong geometry in a computer simulation testing medical uses of
chemicals can cause potentially beneficial medical recommendations
to be missed.

For such applications, it is critical to use rigorous, automatically verified
methods of global optimization, i.e., methods that never discard an actual global
maximum. For a survey of such methods, see, e.g., [7, 9].

3.4 The essence of interval-based validated optimization
methods

3.4.1 The basic idea

Maximizing a function f(z) over a given set B is the same thing as finding the
points Zopy at which the maximum of f is attained, i.e., at which

[@ops) = max f @)

The fundamental idea behind interval-based validated methods of solving opti-
mization problems is the following:

If the maximum max f(z) of the function f(x) over a subset B' C B is
less than the global maximum M def max f(=),

then for every x € B', we have
f (@) <M,

hence the maximum cannot be attained at any point z from set B’. Thus,
all the points from B’ can be deleted from the set of points where
the maximum can be attained.

So, the maximum over different subsets can be used to delete the entire
subsets as possible locations of the global maxima without having to perform
an exhaustive search. Eventually, by eliminating large parts of the original set B,
the set of possible locations of global maxima can be reduced from the original
(often large) set B to a small neighborhood of the actual global maximum zps.

The problem appears to be circular, in practice, because for the above pro-
cess to work, both the global maximum of f over B and B’ are required. Neither
is known in practice. However, with a lower bound on the global maximum of
f over B and an upper bound on the maximum of f over B’, a useful algorithm
can be constructed.

3.4.2 Bounds transform the basic idea to an algorithm

Because is difficult to compute the exact maximum of a function f(z) over a
given set, in practice neither M, the exact value of f over B, nor the exact

maximum (M’ def max f(z)) over the set B’ is available. However, with a lower

bound m on M, and an upper bound M'on M’ , progress can be made. Instead
of comparing the exact value M’ with the global maximum M, M' is compared
with m. Because M' < M' and m < M, if M' < m it follows that M' < M.
This conclusion is only possible with a 100% guarantee that M' < M' and
m < M. Thus, for an algorithm the requirements are for a lower bound m on

10

max f(z) and for an upper bound M' on max f(z). To implement the above

idea it remains necessary to compute the required bounds on the range of f over
the sets B and B'.

3.4.3 Interval computations: a tool for computing range enclosures

To use the above idea, function range bounds must be computed. Arithmetic on
intervals is a tool for computing bounds on the range of functions over intervals.

When the set B’ is simple, e.g., when it is a box B’ = x1 X ... X Xp,
with x; = [z; ,z}], and when the function f(z) is one of the basic arithmetic
operations —e.g., it is an arithmetic operation f(z1,z2) = x1+22, 1 —22, 122,
etc. — the range of the function f(x) can be explicitly computed. For example,
if f(21,22) = o1 + T2, then its range x; +Xs is equal to [z] +z5 , 27 + 25]. The
range of the function f(x1,x2) = 71—z is equal to x; —x2 = [z] —zF, z] — 25].
For f(z1,%2) = x1 - ma, the range x; - x5 is equal to:

[min(z] - 25,27 - o, of - 25, of o)), max(ey -2y, 27 -2f, 2f - 25,2 - aF)].

These explicit formulas are used to evaluate arithmetic expressions using interval
arithmetic. To find an enclosure of a function f(z1,...,z,) on a given box
X1 X ... X Xy, do the following:

e first, parse the expression f(xi,...,%,), i.e., represent computing f as a
sequence of basic arithmetic operations;

e then, replace each operation with the corresponding interval operation,
and perform these operations in the original order.

For example, if f(z) = z - (1 — z), represent f as a sequence of two elementary
operations:

e 7:=1—z (r denotes the 1st intermediate result);
o yi==z-T.
In the interval version, perform the following computations:
er:=1-—x;
ey:=x-r.

In particular, when x = [0, 1], compute the intervals r := [1,1] — [0,1] = [0, 1],
and

y :=[0,1]-[0,1] = [min(0-0,0-1,1-0,1-1),max(0-0,0-1,1-0,1-1)] = [0,1].

Interval arithmetic has the property that the interval obtained any algebraically
equivalent interval algorithm is guaranteed to return an interval bound on the

11

range of the function over the argument interval or box. For example, in the
above case, the interval [0, 1] is indeed an enclosure for the actual range [0, 0.25].

Sometimes it is possible by rearranging expressions to obtain narrower inter-
val bounds. For example, in the above example, if the square of the quadratic
equation is completed to yield:

1 1\°
f@=1-(2-3) -
then the exact range is returned if this expression is computed using interval
arithmetic. Of course, an intrinsic function must be available to compute the
square of an interval variable. This and interval versions of other standard in-
trinsic functions are available in Fortran and C++ compiler support for interval
data types; see, e.g., [32, 33].

Thus, over any box, B, bounds, in particular an upper bound, on the value
of f can be computed by simply evaluating f using interval arithmetic. With
compiler support for interval data types, this is in principle no more difficult
than computing the same expression using real arithmetic.

3.4.4 Last detail: Computing the greatest lower bound on the global
maximum

The above raw idea is almost ready to implement. Only one small detail is
remains: Consideration has been given to the fact that an upper bound M’ on
the value M' = max f(z) can be computed computed using interval arithmetic.

However, so far no consideration no consideration has been given to computing
a lower bound m on the global maximum M = max f(z).

Interval optimization algorithms use a point search algorithm to find a point
Zopt € B that is believed to be close to the global maximum of f. How can the
interval evaluation of f produce a lower bound m’ on f that is close to m, the
exact lower bound of f over B? All interval computations do is to produce the

enclosure [;nv’ ,]\Af’] for the actual range [m', M'] over a box B'.

However, if B' = {opt}, the singleton set consisting of the single point (or
one of the actual points) at which f attains its global maximum, then m' =
M. If the point z,p were known, a lower bound on M could be computed
by simply evaluating f (2opt) using interval arithmetic. Denote the result of
this interval evaluation by [f(@opt)” » f (a:opt)Jr] . By evaluating f at any point
Zopt € B that is in the neighborhood of x4, a valid approximate lower bound
f (@opt)” on m can be computed. By searching for values of Zop, with larger
and larger approximate lower bounds, the algorithm does exactly what a normal
point search algorithm does. However, the real “interval magic” results from the

process of deleting sub-boxes B’ for which M' < f (Zopt)~ . The “magic” is that
no sub-box B’ can be deleted unless it is 100% guaranteed that every value of f

12

in B’ is strictly less than the global maximum, M. Therefore, at the termination
of the interval global optimization algorithm, only small boxes remain that are
guaranteed to contain the set of all global maxima, whether there is just one,
a set of them or a continuous region of values at which f attains its maximum
value in B.

3.4.5 Final algorithm: simple version

Many details needed to construct an efficient interval global optimization algo-
rithm exist. To provide a feel for the algorithm, a simple subdivision process
can be used with only the most rudimentary search process for a good value of
Zopt-The box B is subdivided into several sub-boxes B;, and interval arithmetic

is used to compute the bounds I:ﬁ’lj,ﬁj] on the range of f(x) over each box

B;. Each of the values]\A/.fj is an upper bound on f over the box B;. To get
a value Zop, the center (or midpoint) z; = mid (B;) of each box can be used.
When any new box Bj is processed, if f (Zopt)~ < f(2;), then z; is closer to
Topt than ZTop. Therefore replace the value of Zopy by the value of z;. In this
way larger lower bounds on M are produced as the algorithm proceeds. This
enables more sub-boxes B; to be deleted using a CRT.

After all possible sub-boxes have been deleted, remaining sub-boxes are sub-
divided and the process is repeated until sufficiently small sub-boxes remain.
At any point in the algorithm, the remaining sub-boxes map the set of global
solutions to the optimization problem. The sub-boxes that have been deleted
are known to not contain a global maximum.

Comment. The main idea of the algorithm is as follows:

o IfC - max f is greater than zero then the range of f over B is less than
C;

o If mBin f—C (or equivalently, (-C) — max (—f)) is greater than zero, then
the range of f over B is greater than C|

e If neither of the above CRT problems has an an affirmative answer then
neither of the corresponding branches can be taken because the range of
f over B may contain C.

When a control-flow branch cannot be resolved, the set B, which is usually an
interval vector or box in n-dimensions, must be split. This is an exponential
process. Thus, to drastically decrease the computation time for interval algo-
rithms, it is necessary to efficiently solve easy CRT problems. By understanding
which CRTs are relatively simple and which are relatively complex, it is possible
to focus new algorithm development efforts where they have the best chance of
success. That is, focus on problems that are relatively simple, but for which

13

efficient methods do not yet exist. Understanding the relative complexity of
CRTs requires that these problems be precisely formalized.

3.5 A toy example of an interval-based verified optimiza-
tion algorithm that uses crude range tests (CRTs)

The above algorithm is illustrated with the following toy example: find the value
of the variable z for which the function f(z) = z - (1 — z) attains the largest
possible value on the interval B = [0, 1]. Of course, in this example, the solution
(z = 0.5) is easy to obtain by simply differentiating the objective function and
equating the derivative to 0. This example chosen to illustrate the basic ideas
in interval global optimization on an a simple example where the computing is
easy. To illustrate how rounding errors impact interval arithmetic, 3 decimal
digit interval arithmetic is used.

Subdivide the original interval B = [0, 1] into 10 subintervals B; = [0,0.1],
B; = [0.1,0.2], ..., Bio = [0.9,1.0] (10 simply because it makes computa-
tions easier in this example). For each of these subintervals B;, we use in-

terval arithmetic to compute the corresponding enclosure I; = I:ﬁlj,ﬁj] and
[f ()", f (;t:j)+], where z; is the midpoint m (B;) of the interval B;. For ex-
ample, for B; = [0,0.1], the intervals r; := [1,1] — [0,0.1] = [0.9,1], and the
enclosure is I; = [0,0.1]-[0.9,1] = [0,0.1]. With the midpoint z; = %1 = 0.05,
[f (z1)~ ,f(m1)+] = [0.05,0.05] - [0.95,0.95] = [0.0475,0.0475]. For Bs, 1> =
[1,1] —[0.1,0.2] = [0.8,0.9], and the enclosure is I, = [0.1,0.2] - [0.8,0.9] =

[0.08,0.18]. With midpoint z; = 0.15, f(22) = [0.15,0.15] - [0.85,0.85] =
[0.127,0.128]. The remaining values are contained in Table 1

j B; mj, M; zi | |f (@) f(=z)T
1,10 | [0,0.1] [0,0.1] | 0.05 | [0.0475,0.0475]
2,9 |[0.1,0.2] | [0.08,0.18] | 0.15 0.127,0.128
3,8 | [0.2,0.3] | [0.14,0.24] | 0.25 0.187,0.188
4,7 |[0.3,0.4] [[0.18,0.28] | 0.35 0.227,0.228
5,6 | [0.4,0.5] | [0.2,0.3] | 0.45 0.247,0.248

Table 1: Toy Example Values

The greatest lower lower bound f (z;)~ at a midpoint z; of a box B; occurs
when j = 5 or 6, producing the value of 0.247. Because all the upper bounds M;
for j € {1,2,3,8,9,10} are less than this value, these sub-boxes can be deleted.
Thus, the global maximum or maxima can only be located between 0.3 and 0.7.

If each of the remaining three intervals is subdivided into 10 subintervals
and the above steps are repeated for the new subintervals, we conclude that

14

f(x;)” =0.249, which already excludes all subintervals from the original inter-
vals B3, B4, B7, and Bg.

3.6 More sophisticated verified optimization techniques
use additional crude range tests (CRTSs)

In general, validated optimization methods usually start with a large “box” on
which a function is defined (and on which global maxima can be located), and
produce a list of small-size boxes with the property that every global maximum
is guaranteed to be contained in one of these boxes.

As we have mentioned, rigorous methods of global optimization start with a
large box as a location of the unknown global maxima and gradually replace it
will a small finite collection of small boxes. The decrease in a box size is usually
achieved by dividing one of the boxes into several sub-boxes and eliminating
some of these sub-boxes.

When can we eliminate a sub-box B'? At every stage of the optimization
algorithm, we have already computed several values of the optimized function
f(z1,...,2,), so we know that the global maximum of the function f cannot
be smaller than the largest C' of these already computed values. Thus, if we
can guarantee that the maximum of the function f on a box B’ is smaller than
C, we can thus exclude this box from the list of possible locations of a global
maximum.

This idea would not work efficiently if we had to actually compute the exact
range of a function f on each subbox: this would require a lot of computation
time. Luckily, for the desired exclusion of subboxes, we do not need to know the
ezact range of f on B’ (i.e., the exact values of the maximum and the minimum
of f on B'); for most subboxes, this range is far from the global maximum, so
it is sufficient to check whether the maximum is < C. This checking is exactly
what we called “crude range test”. Thus, crude range tests are, indeed, a crucial
step in solving optimization problems — and since optimization is an important
practical problem, crude range tests are thus important for solving important
real-life problems.

3.7 Other situations in which crude range tests (CRTSs)
are important

In addition to interval-based optimization, there are other situations in which
crude range tests are important. Let us give three such examples:

e There are many cases when it is (relatively) easy to estimate the range:
e.g., when a function is monotonic in each of the variables. How can we
check this monotonicity? A function f is, e.g., increasing in z; if the

partial derivative gi is positive for all the values (z1,...,z,) from a
box B. To check thls property, we must confirm that the minimum of

15

this derivative on B is positive. Again, we do not need to evaluate the
exact range for this derivative, all we need is to check whether the lower
endpoint for this range is positive. In other words, all we need is a crude
approximate estimate for this range.

e Similarly, when the algorithm computing the function f(z1,...,z,) con-
tains branching over the sign of some quantity g(z1,...,z,), then we can
often simplify the computations of f on a box B if we know that for values
from B, only one of the branches is actually used: e.g., if g(z1,...,2,) >0
for all (z1,...,2,) € B.

¢ Optimization is just one example of the importance of crude estimates.
In some real-life problems, we are not yet ready for optimization, e.g.,
because the problem has so many constraints that even finding some values
x = (21,...,%,) of the parameters x; which satisfy all these constraints is
an extremely difficult task. For such problems, we arrive at the problem
of satisfying given constraints, e.g., solving a given system of equations.
For such problems, we can use similar interval techniques to get a small
finite set of small boxes containing solutions, and crude range tests are an
important part of these techniques.

4 Main Reason Why Formalization of the Above
Empirical Hypotheses Is Difficult: Traditional

Methods of Formalizing Similar Hypotheses
Do Not Work Here

4.1 Traditional methods of formalizing similar hypothe-
ses: first part

We want to formalize the statement that one general problem is more complex
than some other general problem. A traditional approach to formalizing this
“relative complexity” is to compare the computational complexity of these prob-
lems — measured by the computation time needed to solve these problems. This
computational complexity can be defined as follows.

There usually exist several different algorithm for solving a general problem.
For each such algorithm ¢/ and for each possible input z, we consider the number
of elementary computational steps #z(z) of this algorithm on this input. This
number is useful because the running time of an algorithm is proportional to
this number of steps. The (“worst-case”) complexity ¢4(n) of the algorithm U
is then defined as the largest possible number of steps for all the inputs whose
size (measured, e.g., by the length of the corresponding binary string) is equal

16

to n:
tiy(n) € max ty(x).
len(z)=n
The smaller t*(n), the simpler the algorithm. The complexity of a problem can
be defined, crudely speaking, as the complexity of the simplest algorithm which
is needed to solve the problem.

For example, if one problem can be solved by a linear-time algorithm (for
which t}y(n) ~ C - n), and for another problem, it has been proven that any
algorithm for solving this problem requires at least quadratic time, then the
second problem is clearly more complex than the first one.

4.2 Traditional methods of formalizing similar hypothe-
ses: second part

The above approach works well if the computational complexity is reasonable.
For some problems, however, the worst-case complexity of algorithms solving
this problems increase so fast that these algorithms, although theoretically pos-
sible, stop being physically feasible.

Some algorithms require lots of time to run. For some problems, all known
algorithms require, for some inputs of length n, the running time proportional to
> 2™ computational steps. For reasonable sizes n = 300, the resulting running
time exceeds the lifetime of the Universe and is, therefore, for all practical
purposes, non-feasible.

In order to find out which algorithms are feasible and which are not, we
must define, in precise terms, what “feasible” means. This definition problem
has been studied in theoretical computer science; no completely satisfactory
definition has yet been proposed.

The best known definition is: an algorithm U is feasible if and only if it is
polynomial time, i.e., if and only if there exists a polynomial P(n) bounding the
worst-case complexity: tj4(n) < P(n) for all n.

This definition is not perfect, because there are algorithms that are polyno-
mial time but that require billions of years to compute, and there are algorithms
that require in a few cases exponential time but that are, in general, very prac-
tical. However, this is the best definition we have so far.

For many mathematical problems, it is not yet known (2001) whether they
can be solved in polynomial time or not. However, it is known that some
combinatorial problems are as tough as possible, in the sense that if we can
solve any of these problems in polynomial time, then, crudely speaking, we
can solve many practically important combinatorial problems in polynomial
time. The corresponding set of important combinatorial problems is usually
denoted by NP, and problems whose fast solution leads to a fast solution of
all problems from the class NP are called NP-hard. The majority of computer
scientists believe that NP-hard problems are not feasible. For that reason, NP-

17

hard problems are also called intractable. For formal definitions and detailed
descriptions, see, e.g., [6, 25, 26, 30].

So, if one of the problems is tractable (i.e., can be solved by a feasible
algorithm), while another problem is intractable, this means that the second
problem is much more complex than the first one.

Comment. The fact that a general problem is “intractable” in this sense does
not necessarily mean that we cannot solve it in practice:

e First, NP-hardness means that we cannot have a general algorithm for
solving all possible instance of this general problem in reasonable time.
We can, however, have algorithms which solve problems from a certain
subclass.

e Second, even if we cannot solve the problem much faster than in the
exponential time 27, it still leaves the possibility to solve this problem for
inputs of small input length n. For example, for inputs of size n = 20, we
need 22° x~ 108 computational steps, which is milliseconds on any modern
computer. For inputs of size n = 30, we need 23° &~ 10° steps: also quite
a doable amount.

4.3 Traditional methods of formalizing similar hypotheses
do not work in our case

We have already mentioned that optimization is often a very complex problem.
This informal idea is confirmed by the following precise result: optimization is
NP-hard (see, e.g., [23]).

Not only the optimization problem itself is NP-hard, but the crude range
testing problem turns out to be NP-hard as well, even we restrict ourselves
to the cases when the difference C' — max f(x) is large. In precise terms, the

problem of computing the maximum max f(z) of a given function f(z) on a

given box B with a given accuracy ¢ is NP-hard for an arbitrary e, large or
small [23].

In other words, we cannot use the traditional approach to compare the com-
plexity of the crude range testing problems for large and for small values of the
difference C' — max f(z), because both the problem corresponding to the large
values of this difference and the problem corresponding to the small values of
this difference are NP-hard.

When both compared problems are NP-hard, the traditional methodology
of formalizing relative complexity does not work. We therefore need a new
approach to comparing complexity of different cases of this general problem.

18

5 Case Study Which Helps Us Formalize (and
Later Justify) the Hypotheses: Mathematical
Optimization Problems Emerging from Fuzzy
Optimization

5.1 Fuzzy optimization: general description

In many real-life problems, we know the exact form of the objective function
f(z), but the set B over which we optimize is fuzzy.

For example, when an automobile company designs a luxury object such as a
“flashy” sports car, its goal is to maximize the profit. Within a reasonable sales
prediction model, profit is a well-defined function, but “flashiness” is clearly a
fuzzy notion.

In general, we have a problem of maximizing a real-valued function f(z)
over a fuzzy set B characterized by a membership function pg(z). In their 1970
paper [2], Bellman and Zadeh proposed to describe the degree pps(z) to which
a given element z is a solution to this fuzzy optimization problem as a degree
to which B is true and x maximizes f. There are several ways to describe this
degree in terms of f(z) and up(z) (see, e.g., [11, 31]), e.g., as

pare) = i (et S

where:

e fi(a,b) is a t-norm (i.e., a function that estimates our degree of confidence
in a composite statement A& B as d(A& B) ~ fg(a,b), where a = d(A)
and b = d(B) are our degrees of confidence in the statements A and B);

e m and M are, correspondingly, the global minimum and the global maxi-
mum of the function f(z) on, e.g., the set B of all the values x for which
ps(z) > 0.

If we want to select a single design, then it is natural to select x for which this
degree is the largest: un(z) — max. Thus, the original fuzzy optimization

problem is transformed into a crisp mathematical optimization problem with a
new objective function pps ().

5.2 Fuzzy programming problems as the most common
case of fuzzy optimization

In the above text, we formulated possible constraints in the most general form,
as an arbitrary fuzzy set B. This description is a natural analogue of the most

19

general description of a crisp optimization problem, in which the set B of pos-
sible values of z is an arbitrary set.

In practice, the most common constraints are inequalities of the form
gi(a,z) < b;, where a and b are vectors, and g(a,z) is a known function. For
example, when the function g(a,z) is linear in z, we get the above-mentioned
linear programming problem. Similarly, in fuzzy optimization, most common
constraints are inequalities of the type g;(a,z) < b;, where all the components
of the vectors a and b are fuzzy sets (usually, fuzzy numbers), and g(a,z) is a
known (real-valued) function.

By using extension principle (see, e.g., [11, 27, 29]), we can determine, for
each z, the degree to which the inequality g;(a,z) < b; is satisfied. Using a t-
norm to combine the degrees corresponding to different inequalities, we get the
degree pup(x) with which a given vector x satisfies all given constraints. These
values form a membership function for the fuzzy constraint set B.

5.3 Specific features of mathematical (crisp) optimization
problems coming from fuzzy optimization

5.3.1 From the purely mathematical viewpoint, both crisp and fuzzy
practical optimization problems are formulated as problems of
crisp optimization

At first glance, we have one more example of a mathematical (crisp) optimization
problem. However, if we look at the new objective function more attentively,
we will see that there is a principal difference between the crisply-formulated
optimization problems and the crisp optimization problems resulting from fuzzy
optimization. To be more precise, the difference is not between the resulting
mathematicel optimization problems, the difference is in the relation between the
original practical problem and the resulting mathematical optimization problem:

¢ in the crisp case, the objective function directly reflects our preferences;

e in the fuzzy case, the objective function of the resulting crisp optimiza-
tion problem is different from the function describing our preferences;
specifically, this objective function is the result of combining the func-
tion describing preferences and the membership function describing fuzzy
constraints.

5.3.2 In practical problems which lead to crisp optimization, the
practical problem uniquely determines the resulting crisp op-
timization problem

In practical problems in which the constraints are crisp, the objective function
f(x) is precisely known, and the constraints are precisely known. These con-
straints can be formulated in terms of a set B of all possible alternatives z

20

which satisfy these constraints. By definition of the word “crisp”, the result-
ing mathematical optimization problem is uniquely determined by the original
formulation of the corresponding practical problem.

5.3.3 In contrast, the same practical fuzzy optimization problem can
lead to somewhat different crisp optimization problems

A fuzzy optimization problem f(z) — max is also formalized as a crisp op-

timization problem f(z) — max — albeit with a modified objective function

f(@) = pu(z) = fo <p3(m), %) # f(x). The difference from the case
of practical crisp optimization problems is that in the fuzzy case, the same
practical fuzzy optimization problem can lead to different crisp optimization
problems.

Indeed, in practical problems which lead to fuzzy optimization, constraints
are formulated by words from a natural language. For the same word like
“small”, different elicitation methods can lead to slightly different membership
functions (see, e.g., [11]). As a result, the exact same practical constraint can
lead to different membership functions pup(x) # pg(z).

When we substitute these different membership functions into the above
expression for the the new objective function f(z) = um(x), we conclude
that the exact same practical constraint can lead to slightly different objec-

tive functions 7o) = jue(2) = fu (e), LS) and 100 = iy (2) =

f& (ug(:c), Jc(dj)%ﬁi”) #+ f(a:) — and thus, to slightly different crisp optimiza-

tion problems.

Thus, the same real-life fuzzy optimization problem can lead not only to the
objective function f(x), but also to other objective functions f/(x) which are,
in some reasonable sense, close to the original function f(m) Thus, it makes
sense to require that the algorithms not only work on a given function f(x),
but that they work robustly in the sense that they produce a correct answer not
only for the exact given function f(z), but for all the functions f'(x) which are
sufficiently “close” to this f(z).

5.3.4 Close: in what sense? Simplest case of direct elicitation

Different elicitation techniques normally result in close values of the membership
functions. Thus, for every z, the values pup(z) and pp(z) of the membership
functions obtained by using different elicitation techniques, should be close to
each other. Since the values pug(z) and pj(x) are close, the values of the new
objective functions par(z) and p'h,(z) — which are computed correspondingly
from pp(z) and pi(z) — should also be close to each other.

21

The above argument shows, therefore, that we must consider functions f(x)
and f'(x) “close” if, for every z, the value f'(z) is close to the corresponding
value of f(x).

5.3.5 Close: in what sense? A more complex case of indirect elici-
tation

The above notion of closeness corresponds to the case when we directly obtain
the values ug(x) by elicitation. For example, if a constraint is that x; is small,
a direct elicitation would mean that we ask the expert(s), for different real
numbers z (e.g., for z = 0, x = 0.5, z = 1, etc.) to what extent this particular
real number is small.

In some cases, however, the elicitation procedure is less direct. One possible
reason why we may need indirect elicitation is that an expert may have difficulty
explaining to what extent a given real number x (or, in general, a vector z =
(z1,...,Ty)) satisfies a given property. This difficulty comes from the fact that
it is often not easy to imagine a situation with a given value of z. For example,
a person may have trouble answering to what extent a person is tall if his height
is 1.80 m. It is much easier to say to what extent, say, President Bush is tall.

In other words, if we cannot ask an expert about the values pp(z) for given x,
but we can ask to what extent a given object X satisfies the given properties. In
this case, we have an additional uncertainty — because we may not be 100% sure
about the value of x corresponding to this test object. Instead of knowing the
exact value x corresponding to this object X, we may know the interval [z, z]
of possible values of x. Thus, when an expert describes his or her degree g to
which this object satisfies the given constraint, we can, in principle, take this
value po as ug(Z) for different values Z from this interval.

Depending on the specific elicitation procedure, we may thus represent the
same expert’s opinion by several different membership functions pg(xz) and
up(z). This difference is that for every value z, the value pp(z) comes from
selecting a value z from the interval [z~ 2T] corresponding to the tested object
X (for which the expert marked his or her degree of constraint satisfaction as
uB(x) = po). Another elicitation procedure may pick a different value z' from
the same interval; as a result, for the corresponding membership function pi(z),
we have ujs(2') = u5(x) (= o).

The resulting functions pp(x) and pj(x) are therefore “close” in the sense
that if one of these functions has a certain value at some point z, the other
function should have the same (or close) value either at this same point z or at
some point z' which is close to z.

5.3.6 Close: in what sense? Informal summary

In view of the above, in this paper, we will consider algorithms which are “ro-
bust” in the sense that they are applicable not only to the original function f(z),

22

but also to close functions f'(z), and we will consider two types of closeness:

e first, a natural y-closeness which means that for every input x =
(z1,...,2p), the y-values — i.e., the values of f(x1,...,2,) and
f'(z1,...,2,) — are sufficiently close;

e second, an (also needed) z-closeness, which takes into consideration the
fact that the functions f(z) and f'(x) may may represent the same values
— but for slightly different inputs z (precise definitions are given in the
following sections).

Comment. To avoid potential misunderstanding, we would like to emphasize
that in this section, we are not proposing a new definition of a fuzzy function.
All we are doing is explaining that since the same practical fuzzy optimization
problem can lead to different — but close — mathematical (crisp) optimization
problems, it is desirable to look for algorithms which should not change much
if we replace one formalization with another formalization of the same practical
problem —i.e., one objective function by another (close) one. Fuzzy optimization
is used only as a motivation for this condition — and as a motivation for the
corresponding notion of closeness (which will be defined precisely in Sections 7
and 8).

6 In Hindsight, This New Approach to Com-
putational Complexity Makes Perfect Sense
Even Without Fuzzy

One of the main reasons why traditional complexity approach is not exactly
applicable here is that traditional complexity theory was originally designed for
discrete problems, for which the answer is either correct or not. In contrast,
we are interested in a continuous problem, in which the answer is correct to
a certain accuracy. Similarly, the input to the problem (i.e., the optimized
function f) is not given exactly, it is given (due to rounding errors etc.) only
with a certain accuracy. Thus, when we feed a function f to the algorithm, the
actual function f’ may be slightly different from f.

Thus, it makes perfect sense to consider algorithms which are applicable
not only to the original objective function f, but also to all objective functions
which are sufficiently close to f.

23

7 Formalization and Justification of the Second
Hypothesis: The Larger the Difference C —
max f, the Easier the Problem

In this and the following sections, we will describe the formalization and the
justification of the above two hypotheses. For exposition purposes, it turned
out to be easier to start with the second hypothesis. The first hypothesis is
covered in the next section.

In order to formalize the second hypothesis, we must recall some basic defi-
nitions of computable (“constructive”) real numbers and computable functions
from real numbers to real numbers (see, e.g., [1, 3, 4, 5, 23]):

Definition 1. A real number z is called computable if there exists an algorithm
(program) that transforms an arbitrary integer k into a rational number xj, that
is 2% —close to x. It is said that this algorithm computes the real number x.

When we say that a computable real number is given, we mean that we are
given an algorithm that computes this real number.

Definition 2. A function f(z1,...,z,) from real numbers to real numbers is
called computable if there exist algorithms Uy and ¢, where:

e Uy is a rational-to-rational algorithm which provides, for given rational
numbers 11, ...,r, and an integer k, a rational number Uy (r1, ... 7y, k)
which is 27 *-close to the real number f(ry,...,r,), and

[Ug(ri,..yny k) = f(r,..)| < 27k
and

e is an integer-to-integer algorithm which gives, for every positive integer
k, an integer (k) for which |z, —z}| < 2=¢®) |z, —z! | < 27¢K)
implies that

[f(@1,. o) = f(2h,. 0 a) <278,

When we say that a computable function is given, we mean that we are given
the corresponding algorithms Uy and ¢.

Let us start with the analysis of non-robust algorithms for checking whether
max f < C.

24

Definition 3. By a crude range testing (CRT) algorithm, we mean an algorithm
U which takes as input a triple (B, f,C), where:

e B is a computable box,
e f is a computable function on the box B, and
e (' is a computable real number,

such that:

e if the algorithm U returns “yes”, then max f < C; and
8 y 1

e if the algorithm U returns “no”, then mgx f>C.

In this definition, we did not require that U always returns “yes” or “no”; we
allow this algorithm to sometimes return “do not know” (or simply stall without
returning any answer). The reason for this is that no CRT algorithm can always
return “yes” or “no”:

Proposition 1. No algorithm is possible which, given a computable function
f on a computable box B and a computable real number C, checks whether
max f < C.

(For the reader’s convenience, all the proofs are placed in the special — last —
Proofs section.)

If we know the lower bound for the difference C'—max f, then such an algorithm
is already possible:

Proposition 2. Let D > 0 be a computable real number. Then, there exists a
CRT algorithm Up which is applicable to all functions f for which C —max f >
D.

The meaning of this proposition is reasonably straightforward:

e According to Proposition 1, if we require that an algorithm’s answer to
the question “max f < C?” is always correct, then this algorithm cannot
be always applicable, there will always be cases for which this algorithm
fails to produce any answer (positive or negative).

e Proposition 2 says that, by an appropriate choice of an algorithm, we can
restrict the cases when an algorithm refuses to answer to situations in
which the difference C' — max f is small (< D); for situations in which
this difference is large enough, the above-mentioned algorithm produces a
definite (and correct) answer.

25

Proposition 2 does not distinguish between the classes of problems corresponding
to different values of D. To make this distinction, we must look for robust
algorithms instead of simply algorithms which work for exact data. Let us start
with a definition of robustness.

Definition 4. Let € > 0 be a real number.

e We say that two functions f(z1,...,2,) and f(x1,...,2,) are e-y-close if
for every input (z1,...,,), their values are e-close:

|f(.CL']_,...,.Z'n) _f(xl)"'axn” <e.

o We say that a CRT algorithm is e-y-robustly applicable to the input
(B, f,C), {fit is applicable not only for this function f, but also for an

input (B, f,C) for an arbitrary function f which is e-y-close to f.
Theorem 1. Let D > 0 be a computable real number, and let € > 0 be another
computable real number. Then:

o Ife < D, there exists a CRT algorithm which is e-y-robustly applicable to
all functions f for which C — max f > D.

e Ife > D, then no CRT algorithm which is e-y-robustly applicable to all
functions f for which C —max f > D.

This result shows that the larger the difference C' — max f, the easier it is to
check that max f < C. Indeed, let D; < Ds; let us take D = (D1 + D3)/2.
Then, according to Theorem 1:

e there exists a CRT algorithm which is D-y-robustly applicable to all func-
tions f for which C' — max f > Ds; and

e no CRT algorithm is possible which is D-y-robustly applicable to all func-
tions f for which C' — max f > D;.

In other words, if D; < D, then the CRT problem corresponding to Dy is
indeed easier to solve.

8 Formalization and Justification of the First
Hypothesis: The Closer the Maxima, the
More Difficult the Problem

8.1 Known justification of the observation that the fewer
global maxima, the easier the problem

Before we describe our formalization and justification of the first hypothesis, let
us recall a justification of a similar hypothesis: that the fewer global maxima,

26

the easier the problem. This formalization and justification is described in [23],
and consists of the following results:

Theorem [12, 13, 17, 19]. There ezists an algorithm U such that:

e U is applicable to an arbitrary computable function f(z1,...,zy) that at-
tains its mazimum on a computable boxr B = [a1,b1] X ... X [an,by] at
exactly one point © = (x1,...,2n),

o for every such function f, the algorithm U computes the global mazimum
point x.

Theorem [16, 17, 18, 19, 20, 21, 22, 23]. No algorithm U is possible such that:

e U is applicable to an arbitrary computable function f(x1,...,z,) that at-
tains its mazimum on a computable box B = [a1,b1] X ... X [an,by] at
ezactly two points, and

o for every such function f, the algorithm U computes one of the corre-
sponding global maximum points x.

Similar results hold for roots (solutions) of a system of equations:

Definition 5. By a computable system of equations we mean a system
filz1,-.,mn) =0, ..., fr(z1,--.,2n) = 0, where each of the functions f;
is a computable function on a computable box B = [a1,b1] X ... X [an, by].

Theorem [12, 13, 17, 19]. There exists an algorithm U such that:

o U is applicable to an arbitrary computable system of equations which has
ezactly one solution, and

o for every such system of equations, the algorithm U computes its solution.

Theorem [16, 17, 18, 19, 20, 21, 22, 23]. No algorithm U is possible such that:

o U is applicable to an arbitrary computable system of equations which has
ezactly two solutions, and

o for every such system of equations, the algorithm U computes one of its

solutions.

8.2 Formalization and justification of the first hypothesis

In a similar manner, we can formalize th first hypothesis:

Definition 7. By a global optimization algorithm, we mean an algorithm which
(whenever it is applicable) returns the list of locations of all global maxima.

27

Definition 8. Let d > 0. We say that points (V... 2(™) are d-separated if
the distance between every two different points from this list is > d.

Theorem [12, 13, 17, 19]. Let m be a given integer, and d > 0 be a computable
real number. Then, there exists an optimization algorithm U such which is
applicable to an arbitrary computable function f(x1,...,%,) which attains its
maximum on a computable box B at exactly m d-separated points.

This result shows that if we know the lower bound on the distance between the
global maxima, then the optimization problem becomes easier. This result by
itself, however, does not explain why the closer the maxima, the more complex
the optimization problem seems to get. To explain this empirical fact, we will
again use a notion of robustness.

Definition 6. Let § > 0 be a real number.

e We say that a 1-1 mapping R™ — R™ is a §-isometry if T changes the
distance p(x,z') between every two points x = (z1,...,Z,) and ' =
(z1,...,2!) by <4, i.e., for for every two points x and z', we have

|p(x7xl) - p(T.’L’,Tl’I)| < J.

e We say that two functions f(x1,...,%,) and f(x1,...,x,) are 0-z-close if

there exists a d-isometry T for which f(z) = f(Tx).

o We say that an algorithm is §-z-robustly applicable to the input f, if it is
applicable not only for this function f, but also for an arbitrary function
f which is §-z-close to f.

Theorem 2. Let d > 0 be a computable real number, and let § > 0 be another
computable real number. Then:

o If § < d, there exists an optimization algorithm U which is §-x-robustly
applicable to an arbitrary computable function f(x1,...,x,) which attains
its mazimum on a computable box B at exactly m d-separated points.

e Ifé > d, then no optimization algorithm U can be §-x-robustly applicable to
an arbitrary computable function f(x1,...,x,) which attains its mazimum
on a computable box B at exactly m d-separated points.

This result shows that the larger the lower bound d between the global maxima,
the easier it is to solve the optimization problem. Indeed, let d; < ds; let us
take d = (dy + d3)/2. Then, according to Theorem 1:

e there exists an optimization algorithm which is d-z-robustly applicable to
all functions f for which global maxima are ds-separated; and

28

e no optimization algorithm is possible which is d-z-robustly applicable to
all functions f for which global maxima are d;-separated.

In other words, if d; < dz, then the optimization problem corresponding to do
is indeed easier to solve.
Similar results hold for roots (solutions) of a system of equations:

Definition 9. By a system solving algorithm, we mean an algorithm which
(whenever it is applicable) returns the list of solutions to a given computable
system of equations.

Theorem [12, 13, 17, 19]. Let m be a given integer, and d > 0 be a computable
real number. Then, there exists a system solving algorithm U such which is
applicable to an arbitrary computable computable system of equations which has
exactly m d-separated solutions.

Definition 6'. Let § > 0 be a real number.

o We say that two systems of equations

filzr, ... zn)=0,..., fu(®1,...,2,) =0,

and _ B
fi@e, o @0) = 0,00, fr(Tr, ..y 20) =0

are §-x-close if there exists a d-isometry T' for which ﬁ(a;) = fi(Tz) for
alli=1,...,k.

o We say that an algorithm is §-z-robustly applicable to the system
f1=0,..., fr =0, if it is applicable not only for this system, but also for
an arbitrary systems of equations f; =0, ..., fr = 0 which is é-z-close to
the system f; = 0,..., fr = 0.

Theorem 2'. Let d > 0 be a computable real number, and let § > 0 be another
computable real number. Then:

o Ifd < d, there exists a system solving algorithm U which is §-z-robustly
applicable to an arbitrary computable system of equations which has exactly
m d-separated solutions.

o Ifé > d, then no system solving algorithm U can be §-z-robustly applicable
to an arbitrary computable system of equations which has ezxactly m d-
separated solutions.

29

8.3 Can we apply these results to fuzzy optimization? A
general comment to both justifications

In this paper, fuzzy optimization is used only as a motivation for the new defi-
nition of complexity. Our main complexity results are about the computational
complexity of crisp optimization problems.

These complexity results can also be — indirectly — applied to fuzzy opti-
mization. Indeed, from the mathematical viewpoint, many methods of fuzzy
optimization can be described as crisp optimization problems — albeit with a
modified objective function. Thus, e.g., from Theorem 2, we can conclude that
fuzzy optimization problems which have several solutions, the closer the solu-
tions, the more difficult the problem.

Conclusion

In many practical problems, we are looking for the best decision or the best
control under given constraints. These problems are naturally formalized as op-
timization problems. Several efficient methods of solving optimization problems
use interval computations. In applying these methods, it is often important to
check whether the maximum max f of a given function f on a given set B is

smaller than a given number C'.
Empirical evidence shows that different instances of this CRT problem have
different relative complexity: the larger the difference C' — max f, the easier

the problem. It is difficult to formalize this empirical difference in complexity
in standard complexity theory terms, because all these cases are NP-hard. In
this paper, we use the analysis of mathematical optimization problems emerg-
ing from fuzzy optimization to propose a new “robust” formalization of relative
complexity which takes into consideration numerical inaccuracy. This new for-
malization enables us to theoretically explain the empirical results on relative
complexity.

This formalization also enables us to justify another empirical fact about
optimization: that in the situations when the optimized function has several
global maxima, the further away global maxima from each other, the easier the
problem.

9 Proofs

9.1 Proof of Proposition 1

It is easy to show that a constant function f(x1,...,2,) = 0 is a computable
function. For this function, max f = 0. Thus, if we had an algorithm which
checks, given B, f, and C, whether max f < C' or not, then we will be able

30

to check whether C' > 0 for a given computable real number C. However, it is
known that it is algorithmically impossible to check whether a given computable
real number is positive or not [1, 3, 4, 5, 15, 23]). Thus, a CRT algorithm cannot
be always applicable. The proposition is proven.

9.2 Proof of Proposition 2

1. It is known that there exists an algorithm which, given a computable function
on a computable box, and a given § > 0 returns a rational number M which is
d-close to max f [1, 3, 4, 5, 23]. Let us reproduce the main idea of this proof.

1.1. First, we prove that there exists an integer m for which the
2~ ™-_agpproximation d,, to § exceeds 3 -27™.

Indeed, since § > 0, we have § > 2% for some k. Therefore, for the
2~ (k+2)_approximation dyy2 to §, we get |0p12 — 6| < 27*+2) hence

Opaa > 0 — 27 (F+2) 5 9=k _ 9=(k+2) _ 3. 9= (k+2)

So, the existence is proven for m = k + 2.

This m can be algorithmically computed as follows: we sequentially try
m = 0,1,2,... and check whether §,, > 3 -27™; when we get the desired
inequality, we stop.
1.2. Let us now show that for the integer m computed according to Part 1.1 of
this proof, we have § > 2-27™,

Indeed, since §,, > 3-27™ and |§ — 6,,| < 27™, we can conclude that
§>0m —2"">3.2"M_9 M _2.9"m

So, if we can find a rational number M which is 2 - 27™-close to max f, this
rational number will thus be also d-close to max f.

1.3. Let us now use this m to compute the desired §-approximation to max f.

1.3.1. By using the second algorithm ¢ in the definition of a computable func-
tion, we can find a value ¢(m) such that if |z; — 2} < ¢(m) foralli=1,...,n,
then

|[f(@1y. ey mn) — f2h, .. @) <27™.

For each dimension [a;, b;] of the box B, we can then take finitely many values

r) =1 om),r® =1+ om), ..., 1V = MY 4 o(m)

2

(separated by ¢(m)) which cover the corresponding interval. Then, each value
x; € [ai, b;] will be different by one of these values rz(k") by < p(m).

1.3.2. Combining the values corresponding to different dimensions, we get a
finite list of rational-valued vectors (ry“), ... ,r%k")) with the property that

every vector (z1,...,Z,) € B is ¢(m)-close to one of these vectors.

31

Due to the definition of ¢(m), this means that each value f(z1,...,2,) is
2~ ™-close to one of the values f (r%kl), e ,r%k")). Therefore, the desired max f
is 27™-close to the maximum of all the values f (r%kl), ceey r%k") .

By using the algorithm Uy, we can compute each of these values with

the accuracy 2=™. Thus, the maximum M of thus computed rational val-

ues Uy (r§k1),...,r(nk"),m). is 27™_close to the maximum of all the values

f rgkl), .. .,rﬁ“") , and hence, 2 - 27™-close to max f. Thus, M is indeed
d-close to max f. The first part is proven.
2. The desired CRT algorithm Up can be therefore composed as follows:

o First, since 6 = D/4 is a computable number, we can use Part 1.1 of this
proof to (constructively) find m for which

§=D/4>2-27™ (1)

e Then, we use Part 1 of this proof to compute a rational number M for
which
|M —max f| <2-27™. (2)

e Third, we use the fact that C is a computable real number and generate
the rational number C,,_; for which

|C = Cpq| <27V =2.97m (3)

e Finally, we check the inequality
Cp—1—M>4-27™. 4)
If this inequality holds, we conclude that max f < C.
To complete the proof, we must check two things:

e First, that the above CRT algorithm is correct, i.e., that whenever this
algorithm concludes that max f < C, it is indeed true that max f < C.

e Second, that the above CRT algorithm Up is indeed applicable to all
functions f for which C' — max f > D.

3. Let us first prove that the above algorithm Up is correct.

Indeed, if the inequality (4) holds, then Cy,,— 1 > M +4-2"™. Using (3), we
can then conclude that C' > C),_1 — 2- 2™ hence

C>Cpp1—2-27">M+2-27".

32

Finally, from (2), we conclude that M > max f — 2-2~™, hence
C>M+2-27">maxf—2-2""+2-2"™ = max f.

Correctness is proven.

4. Let us now complete our proof by showing that the above algorithm Up is
applicable to all functions f for which C — max f > D.

Indeed, let C — max f > D, i.e., that C > max f + D. Due to formula (1), we
have D > 8-27™ hence

C>maxf+D>maxf+8-27™.
From (4), we can now conclude that
Cpne1>2C—2-27">maxf+8-27"—2-27" =max f+6-27™.
From (2), we conclude that max f > M —2-27™ hence
Coo1>M—2-27m 4627 =M 4+4.27™

i.e., the inequality (4) is indeed satisfied. Thus, for such a function f, the
algorithm Up will indeed return the correct answer.
The proposition is proven.

9.3 Proof of Theorem 1
1. Let us first show that if ¢ < D, then there exists a CRT algorithm which is
e-y-robustly applicable to all functions f for which C' — max f > D.

Indeed, let us show that in this case, we can compute a computable positive
real number D = D — ¢, and then use the (non-robust) CRT algorithm Us
described in the proof of Proposition 2. Let us prove that this algorithm is
indeed e-y-robustly applicable to all functions f for which C — max f > D.

By definition of robustness, we need to prove that the algoirithm Uz is

applicable to every function fwhich is e-close to a function f for which
C —maxf>D.

Indeed, when f is close to such a function f, we have |maxf— max f| < g,
hence max f < max f + ¢, and so

C-maxf>C-maxf—e>D—ec=D.

Thus, by Proposition 2, the algorithm Uz is indeed applicable to the function

f. The statement is proven.

33

2. Let us now prove that if £ > D, then no CRT algorithm U is possible which
is e-y-robustly applicable to all functions f for which C' — max f > D.

Indeed, if such an algorithm U was possible, we would be able to check whether
a given computable real number « is positive or not, which, as we have already
mentioned, is known to be impossible.

Since € > D, the difference D — ¢ is a computable negative real number, and
hence, for every «, the number

D — D —
szax(a, 6)> ¢

is also a computable real number. It is easy to check that o > 0 if and only if
C > 0, so, to check whether o > 0, it is sufficient to be able to check whether
C > 0 for all real numbers

CZD;S. (5)

To check this auxiliary inequality C' > 0, we apply the hypothetic algorithm U
to the constant-valued function f(z1,...,2,) =0 (for which max f = 0) and to
this number C. _

The algorithm U is applicable to this function f because of the following:

e The function fis e-close to another constant-valued computable function
flxy,...,z,) = —€.

e For this new function f, we have max f = —e. Hence, due to the inequality
(5), we get

D
C —max f > te

thence (due to ¢ > D) C —max f > D.

e The hypothetic algorithm U is e-y-robustly applicable to every function f
for which C' —max f > D, in particular, to the above constant function f.
By definition of robustness, this means that U should be applicable to any
function f which is e-close to f, in particular, to the constant function

f=0.

The contradiction is proven, hence the hypothetic algorithm U is indeed impos-
sible.
The theorem is proven.

9.4 Proof of Theorem 2

This proof is similar to the proof of Theorem 1:

34

e When § < d, then we can compute d=d-6>0. Then, whenever the
global maxima of the function f are d-separated, and a function f is J-
z-close to f, the global maxima of f are d-separated. So, as the desired
robust algorithm, we can take the known algorithm corresponding to the
separation d > 0.

e When § > d, then an arbitrary function with m global maxima is ¢-
close to some d-separated function. Thus, if there existed such a robust
algorithm we would have an algorithm which would be applicable to every
function with exactly m global maxima. We have already mentioned (in
the previous section) that such an algorithm is impossible.

9.5 Proof of Theorem 2’

Theorem 2' follows from Theorem 2 if we take into consideration that the prob-
lems of solving a system of equation and of locating global maxima can be
naturally (and computably) reduced to each other in such a way that the so-
lutions to the system of equations become global maxima and vice versa (and
thus, the number of solutions becomes the number of global maxima and vice
versa):

e If we know how to solve systems of equations, then the problem of locat-

ing global maxima of a function f(xi,...,%,) can be reformulated as a
problem of finding all solutions to an equation fi(x1,...,%,) =0, where
def
filz1,...,zn) = max f — f(z1,...,25).

e Vice versa, if we know how to locate global maxima, then the problem of
solving a system of equations fi(z1,...,2,) =0, ..., fr(z1,.-.,2,) =0
can be reformulated as a problem of finding all global maxima of a function

F@1,) C = (fi@,)| F e | fe(@, s 20)])

Acknowledgments

This work was supported in part by NSF grants CDA-9522207 and 9710940
Mexico/Conacyt, by NASA under cooperative agreement NCC5-209 and grant
NCC 2-1232, by the Future Aerospace Science and Technology Program (FAST)
Center for Structural Integrity of Aerospace Systems, effort sponsored by the
Air Force Office of Scientific Research, Air Force Materiel Command, USAF,
under grant number F49620-00-1-0365, and by Grant No. W-00016 from the
U.S.-Czech Science and Technology Joint Fund.

The authors are thankful to Weldon Lodwick, the editor of the special issue,
for his encouragement, to Ramon E. Moore for his encouragement and useful
advise, and to the anonymous referees for their very useful comments.

35

References

[1] M. J. Beeson, Foundations of constructive mathematics, Springer-Verlag,
N.Y., 1985.

[2] R. E.Bellman and L. A. Zadeh, “Decision-making in a fuzzy environment,”
Management Sci., 1970, Vol. 17, pp. B141-B164.

[3] E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.

[5

]

[4] E. Bishop and D. S. Bridges, Constructive Analysis, Springer, N.Y., 1985.
] D. S. Bridges, Constructive Functional Analysis, Pitman, London, 1979.
]

[6] M. Garey and D. Johnson, Computers and intractability: o guide to the
theory of NP-completeness, Freeman, San Francisco, 1979.

[7] E. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker,
1992.

[8] N.Karmarkar, “A new polynomial-time algorithm for linear programming”,
Combinatorica, 1984, Vol. 4, pp. 373-396.

[9] R. B. Kearfott, Rigorous global search: continuous problems, Kluwer, Dor-
drecht, 1996.

[10] L. G. Khachiyan, “A polynomial-time algorithm for linear programming”,
Soviet Math. Dokl., 1979, Vol. 20, No. 1, pp. 191-194.

[11] G.Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,
Prentice Hall, Upper Saddle River, NJ, 1995.

[12] U. Kohlenbach. Theorie der Majorisierbaben ..., Ph.D. Dissertation, Frank-
furt am Main, 1990.

[13] U. Kohlenbach, “Effective moduli from ieffective uniqueness proofs. An
unwinding of de La Vallée Poussin’s proof for Chebycheff approximation”,
Annals for Pure and Applied Logic, 1993, Vol. 64, No. 1, pp. 27-94.

[14] O. Kosheleva, V. Kreinovich, B. Bouchon-Meunier, and R. Mesiar, “Op-
erations with Fuzzy Numbers Explain Heuristic Methods in Image Pro-
cessing”, Proceedings of the International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems
(IPMU’98), Paris, France, July 6-10, 1998, pp. 265-272.

[15] V. Kreinovich, “What does the law of the excluded middle follow from?,”
Proceedings of the Leningrad Mathematical Institute of the Academy of Sci-
ences, 1974, Vol. 40, pp.37-40 (in Russian), English translation: Journal of
Soviet Mathematics, 1977, Vol. 8, No. 1, pp. 266-271.

36

[16] V. Kreinovich, Complezity measures: computability and applications, Mas-
ter Thesis, Leningrad University, Department of Mathematics, Division of
Mathematical Logic and Constructive Mathematics, 1974 (in Russian).

[17] V. Kreinovich, “Uniqueness implies algorithmic computability”, Proceed-
ings of the 4th Student Mathematical Conference, Leningrad University,
Leningrad, 1975, pp. 19-21 (in Russian).

[18] V. Kreinovich, Reviewer’s remarks in a review of D. S. Bridges, Constrictive
functional analysis, Pitman, London, 1979; Zentralblatt fiir Mathematik,
1979, Vol. 401, pp. 22-24.

[19] V. Kreinovich, Categories of space-time models, Ph.D. dissertation, Novosi-
birsk, Soviet Academy of Sciences, Siberian Branch, Institute of Mathemat-
ics, 1979, (in Russian).

[20] V. Kreinovich, “Unsolvability of several algorithmically solvable analytical
problems”, Abstracts Amer. Math. Soc., 1980, Vol. 1, No. 1, p. 174.

[21] V. Ya. Kreinovich, Philosophy of Optimism: Notes on the possibility of
using algorithm theory when describing historical processes, Leningrad
Center for New Information Technology “Informatika”, Technical Report,
Leningrad, 1989 (in Russian).

[22] V. Kreinovich and R. B. Kearfott, “Computational complexity of optimiza-
tion and nonlinear equations with interval data”, Abstracts of the Sizteenth
Symposium on Mathematical Programming with Data Perturbation, The
George Washington University, Washington, D.C., 2627 May 1994.

[23] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational complez-
ity and feasibility of data processing and interval computations, Kluwer,
Dordrecht, 1998.

[24] V. Kreinovich, H. T. Nguyen, and B. Wu, “Justification of Heuristic Meth-
ods in Data Processing Using Fuzzy Theory, with Applications to Detection
of Business Cycles From Fuzzy Data”, Proceedings of the 8th IEEFE Interna-
tional Conference on Fuzzy Systems FUZZ-IEEE’99, Seoul, Korea, August
22-25, 1999, Vol. 2, pp. 1131-1136; extended version in Fast- West Journal
of Mathematics, 1999, Vol. 1, No. 2, pp. 147-157.

[25] L. R. Lewis and C. H. Papadimitriou (1981), Elements of the theory of
computation, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[26] J. C. Martin, Introduction to languages and the theory of computation,
McGraw-Hill, New York, 1991.

[27] H. T. Nguyen, “A note on the extension principle for fuzzy sets”, J. Math.
Anal. and Appl., 1978, Vol. 64, pp. 359—-380.

37

[28] H. T. Nguyen, V. Kreinovich, and B. Bouchon-Meunier, “Soft Computing
Explains Heuristic Numerical Methods in Data Processing and in Logic
Programming”, In: L. Medsker (ed.), Frontiers in Soft Computing and
Decision Systems, AAAT Press (Publication No. FS-97-04), 1997, pp. 30—
35.

[29] H. T. Nguyen and E. A. Walker, First Course in Fuzzy Logic, CRC Press,
Boca Raton, Florida, 1999.

[30] C. H. Papadimitriou, Computational Complezity, Addison-Wesley, San
Diego, 1994.

[31] R. Slowinski (ed.), Fuzzy sets in decision analysis, operations research, and
statistics, Kluwer, Boston, Massachusetts, 1998.

[32] Sun Microsystems, Interval arithmetic in Sun’s Forte Fortran 95 compiler,
http://www.sun.com/forte/fortran/interval /index.html

[33] Sun Microsystems, Interval arithmetic in Sun’s Forte C++ compiler,
http://www.sun.com/forte/cplusplus/interval /index.html

[34] R. J. Vanderbei, Linear Programming: Foundations and FExtensions,
Kluwer, Boston, Massachusetts, 1996.

[35] G. W. Walster, “The Future of Intervals”, Abstracts of the 9th GAMM
— IMACS International Symposium on Scientific Computing, Computer
Arithmetic, and Validated Numerics, Karlsruhe, Germany, September 19—
22, 2000, p. 23 (full paper will appear in the conference proceedings).

[36] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia,
Pennsylvania, 1997.

38

	University of Texas at El Paso
	DigitalCommons@UTEP
	7-1-2001

	Computational Complexity of Optimization and Crude Range Testing: A New Approach Motivated by Fuzzy Optimization
	G. William Walster
	Vladik Kreinovich
	Recommended Citation

