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Abstract

In many real-life decision-making situations, in particu-
lar, in processing satellite images, we have an enormous
amount of information to process. To speed up the in-
formation processing, it is reasonable to first classify
the situations into a few meaningful classes (clusters),
find the best decision for each class, and then, for each
new situation, to apply the decision which is the best
for the corresponding class. One of the most efficient
clustering methodologies is fuzzy clustering, which is
based on the use of fuzzy logic. Usually, heuristic clus-
terings are used, i.e., methods which are selected based
on their empirical efficiency rather than on their proven
optimality. Because of the importance of the corre-
sponding decision making situations, it is therefore de-
sirable to theoretically analyze these empirical choices.
In this paper, we formulate the problem of choosing
the optimal fuzzy clustering as a precise mathematical
problem, and we show that in the simplest cases, the
empirically best fuzzy clustering methods are indeed
optimal.

1 Fuzzy Clustering: Existing Approaches and
Formulation of the Problem

For satellite imaging, fuzzy clustering is im-
portant. Decision making is especially important in
geophysics, because in many geophysical situations, a
wrong decision can be very costly (be it digging a well
where there 1s no oil, or not preparing the building
for the potential earthquakes, or spending lost of ef-
fort on securing building against earthquakes which
are not typical for this area). To decrease the possi-
bility of a costly erroneous decision, we must use as
much information as possible. One of the important
sources of such information is satellite imaging. How-

ever, with satellite images, we face a different problem:
each satellite image contains a huge amount of data. A
good photo contains up to a Gigabyte of information,
and with modern multi-spectral satellite images, we get
several Gigabytes. We do not know how to process all
this information.

One of the known methods of fighting this information
explosion is clustering. Instead of analyzing each photo
individually, we do the following: First, we classify the
photos into a few meaningful clusters. Then, for each
cluster, we find the best decision. Finally, when we
encounter a new situation, we find the cluster to which
this situation belongs, and make a decision which is the
best for this cluster.

The idea of clustering is very natural in science: The
analysis of every new phenomenon starts with classi-
fication, when instead of numerous different examples,
we have a few classes. Classification helped to analyze
chemical elements, elementary particles, living organ-
isms, astronomical objects, etc.

In some situations, where assumptions about structure
of data can be formulated in statistical terms, statisti-
cal techniques (see, e.g., [13]) are appropriate if we have
sufficiently many data. In other situations, we must use
heuristic classification methods, in particular, methods
that use fuzzy logic. The main idea of fuzzy clustering

is described in [1, 2, 3,4, 5, 6, 8,9, 10, 15, 23, 24].

The goal of fuzzy clustering: “typical” repre-
sentatives and how to use them. We start with
objects which we want to classify (i.e., to cluster). To
classify, we use several (numerical) characteristics of
these object. Let us denote the total number of these
characteristics by s. The s real numbers that charac-
terize each object can be naturally viewed as a point in
s-dimensional space R*. Thus, having n objects means



that we have n points xq,...,x, in this space. These
n points are the input for clustering.

As a result of clustering, we want to describe several
clusters. Each cluster can be characterized by its “typ-
ical” element t; € R®. After these typical elements
t1,...,t; are found, we can then classify each object
z € R® according to which typical element it is closest
to. This “classification” is a fuzzy notion:

e if an element x is very close to, say, 1, and not
close to any other typical representative, then it
is reasonable to conclude that = belongs to class

1.
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e however, if an object # € R’ is almost equally
close to two different representatives ¢; and ts,
then it is reasonable to conclude that this object
belongs, to some extent, to both clusters 1 and 2.

To express this 1dea in precise terms, we select a func-
tion f(z) (called potential function) such that for every
two point # and y from R®, the value f(z —y) describes
to what extent # and y are close. This function is usu-
ally non-negative, and the closer # and y, the larger the
value of the potential function. Potentially, as a poten-
tial function, we can use a membership function which
describes the relation “z and y are close”; however,
from the mathematical viewpoint, the choice of mem-
bership function would mean that we only allow f(z)
to take values from the interval [0, 1], and sometimes,
more general values are needed (in our main text, we
will explain why we need such values).

When the potential function is selected, then we can
say that an object x belongs to 1-st cluster with a
degree f(x — t1), to the 2-nd cluster with the degree
flx —ta), ..., and to ¢-th cluster with the degree
f(z—t,). Since we do not require any normalization of
the function f(x), it is convenient to normalize these
values so that they will add up to 1, in other words, to
describe the degree to which z belongs to j-th cluster
as
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How to find “typical” representatives? The
most widely used approach. We have described
how to classify an object when the clusters (or, to
be more precise, their typical representatives) have al-
ready been found. How can we find these representa-
tives?

The most widely used fuzzy clustering method is the
method of Fuzzy C-Means (Fuzzy ISODATA) [1, 2, 3,
4,5, 6, 10, 15]. This method is based on the natural
idea that each characteristic of a typical representative
should be equal to an average over all elements of the
corresponding cluster. If we have crisp clustering, then
we would simply take the arithmetic average. How-

ever, since we have fuzzy clustering, it is natural to
count, in this average, each element z; with the weight
d;(x;) that is proportional to this element’s degree of
belonging to the cluster. In other words, it is natural
to require that for each j,

di(x1) w1+ ...+ dj(z,) - zp
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(2)

This method leads to good quality clustering. Its main
disadvantage is that since the values d;(;), in their
turn, depend on t;, the equation (2) is, actually, a non-
linear system of equations for determining the cluster
“centers” t1,...,t,4, and solving this system of equa-
tions often requires lots of computation time.

How to find “typical” representatives? Recent
approaches. To simplify computations, a new method
has been recently proposed [23, 24] (see also [8, 9]).
This method is based on the following idea: when we
say that an element ¢; is a typical representative of the
cluster that consists of elements z;,,...,%;,, we mean
that for each element x € R’, the degree f(z —t;) with
which z is close to ¢; is equal to the average of the
degrees f(x—wy,), ..., f(# —x;,) with which x is close
to all elements of this cluster:

fle—zi)+.. .+ flz—z) =k - flx—1t;). (3)

If we have a crisp classification, then each of the origi-
nal data points z1, ..., z, belongs to one and only one
cluster and therefore, by adding equalities (3) for all ¢
clusters, we would conclude that

where k; is the total number of elements in j-th cluster
(i.e., the cardinality of j-th cluster).

For a fuzzy clustering, it is reasonable to expect a sim-
ilar formula, with k; being the fuzzy cardinality of j-th
cluster (see, e.g., [16]). So, to find t;, we can do the
following:

e compute, for all z, the function
M(z) = f(x— ).

i=1
e represent this function M(z) as a sum

q

M(x) = ki f(x—1)
j=1
for the smallest possible number of clusters.

Theoretically, the smallest possible number of clusters
is 1, in which case M (z) = k1 - f(z —t1). If one cluster



is indeed sufficient, then, due to the properties of the
“closeness” function f(x), we can find ¢; easily: it is
the value for which M (z) is the largest possible. In this
case, if f(x) is normalized in such a way that f(0) =1
(i.e., if f(z) is a membership function, and z is close
to « with degree of truth 1), we can take k1 = M (¢1).

In view of this observation, it is reasonable to select,
as t1, the value for which M () is the largest possi-
ble. In this case, we cannot take k1 = M(¢1), because
other clusters are also contributing to this value M(#;).
Instead, we can take k1 = ¢ - M(¢1) for some number
q € (0,1). After that, we can subtract k- f(x—1%1) from
the original function M (), and use a similar method to
represent the new function My (2) = M(z)—k1-f(x—11)
as a sum

Mi(z) = ij Sz —t5);

etc.  We stop when the remainder becomes small
enough.

This method is very similar to a very successful method
of image reconstruction used in radio astronomy under
the name of CLEAN (see, e.g., [14]). Due to the suc-
cess of the CLEAN method, it is not surprising that
this clustering method also turned out to be reason-
ably successful.

Main problem: how to choose a potential func-
tion? We have mentioned that the above fuzzy clus-
tering methods turned out to be very successful, but
we must clarify this statement: these methods are very
successful provided we appropriately choose the poten-
tial function f(x). For a different choice of f(x), the
resulting clustering may not be that good.

To the best of our knowledge, so far, the choice of the
potential function was mainly done either empirically
or heuristically. The following three families of poten-
tial functions are most widely used:

e in the original Fuzzy C-Means method, the func-
tion f(x) = |#|~™ is used, where |z| is the norm
of a vector #, and m > 0 is a positive real number;

e in [23, 24], the potential function
f(z) = exp(—o - |#]) is used; and

e in [8, 9], the Gaussian potential function f(z) =
exp(—a - |z]?) is used.

The first choice is used when we have no information
about the typical cluster radius; the second and third
choices presuppose that an approximate cluster radius
is already known.

In this paper, we show that these three choices are
indeed optimal in some reasonable sense. Thus, we
provide a theoretical justification of these empirical and
heuristic choices.

2 Optimal Potential Functions: General Idea

Optimal in what sense? The main idea. We
are looking for the best (optimal) choice of a potential
function.

Normally, the word “best” is understood in the sense
of some numertcal optimality criterion. However, in
our case of fuzzy choice, it is often difficult to formu-
late the exact numerical criterion. Instead, we assume
that there is an ordinal criterion, i.e., that we can com-
pare arbitrary two choices, but that we cannot assign
numerical values to these choices.

It turns out that in many cases, there are reasonable
symmetries, and it is natural to assume that the (or-
dinal) optimality criterion is invariant with respect to
these symmetries. Then, we are able to describe all
choices that are optimal with respect to some invariant
ordinal optimality criteria.

This general approach was described and used in [7,
18, 19, 20, 21], in particular, for fuzzy control. In this
section, we will show that this approach is applicable
to fuzzy clustering as well.

Let us borrow from the experience of modern
physics and use symmetries. In modern physics,
symmetry groups are a tool that enables to compress
complicated differential equations into compact form
(see, e.g., [22]). Moreover, the very differential equa-
tions themselves can be uniquely deduced from the cor-
responding symmetry requirements (see, e.g., [12, 11]).

It is possible to use symmetry. As we have men-
tioned, in our previous papers, we have shown that the
symmetry group approach can be used to find optimal
membership functions, optimal t-norms and t-conorms,
and optimal defuzzification procedures.

It 1s therefore reasonable to expect that the same ap-
proach can also be used to choose the best potential
function for fuzzy clustering.

3 Optimal Potential Functions: Case When
We Do Not Have a Prior Knowledge of the
Cluster Radius

We must choose a family of functions. We must
select a potential function f(x). The only way the po-
tential function f(z) is used in clustering is through
the normalized formula (1). Because of the normal-
ization, if we re-scale the values of the potential func-
tion, i.e., if we choose a constant C' > 0 and consider
a new potential function f(x) = C' - f(z), this new po-
tential function will lead to exactly the same values
d;(x) as the old one. Therefore, from the viewpoint of



fuzzy clustering, there is no way to distinguish between
the functions f(x) and f(x) =C - f(»). So, based on
clustering behavior, we cannot choose a single function
f(z); we can only choose a 1-parametric family of func-
tions {C - f(x)} that is characterized by a parameter
C.

Comment about notations. In the following text, we
will denote families of functions by capital letters, such
as F, F', G, etc.

We must choose the best family of functions.
We want to select the best family of functions.

What is a criterion for choosing a family of func-
tions? What does it mean to choose a best family of
functions? It means that we have some criterion that
enables us to choose between the two families.

Traditionally, optimality criteria are numerical, 1.e., to
every family F', we assign some value J(F') expressing
its quality, and choose a family for which this value
is maximal (i.e., when J(F) > J(G) for every other
alternative (). However, it is not necessary to restrict
ourselves to such numeric criteria only.

For example, if we have several different families F' that
have the same classification ability P(F'), we can choose
between them the one that has the minimal computa-
tional complexity C'(F'). In this case, the actual crite-
rion that we use to compare two families is not numeric,
but more complicated:

A family F is better than the family Fs if and
only if

— either P(I)) > P(F3),

— or P(Fy) = P(Fs) and C(F}) < C(F2).

A criterion can be even more complicated.

The only thing that a criterion must do is to allow us,
for every pair of families (Fy, F2), to make one of the
following conclusions:

e the first family is better with respect to this cri-
terion (we’ll denote it by Fy > Fa, or Fa < I);

e with respect to the given criterion, the second
family is better (Fa = Fy);

e with respect to this criterion, the two families
have the same quality (we’ll denote it by Fy ~
Fy);

e this criterion does not allow us to compare the
two families.

Of course, it 18 necessary to demand that these choices
be consistent.

For example, if F} > Fy and F5 > F5 then F} >
3.

The criterion must be final, 1.e., it must pick the
unique family as the best one. A natural demand is
that this criterion must choose a unique optimal family
(i.e., a family that is better with respect to this crite-
rion than any other family).

The reason for this demand is very simple: If a criterion
does not choose any family at all, then it is of no use. If
several different families are the best according to this
criterion, then we still have the problem of choosing the
best among them. Therefore we need some additional
criterion for that choice, like in the above example:

If several families F'y, Fs, ... turn out to have the
same classification ability (P(Fy) = P(Fs2) =

..), we can choose among them a family with
minimal computational complexity (C(F;) —
min).

So what we actually do in this case is abandon that
criterion for which there were several “best” families,
and consider a new “composite” criterion instead: F is
better than Fy according to this new criterion if either
it was better according to the old criterion, or they had
the same quality according to the old criterion and Fj
is better than F, according to the additional criterion.

In other words, if a criterion does not allow us to choose
a unique best family, it means that this criterion is not
final, we’ll have to modify it until we come to a final
criterion that will have that property.

The criterion must not change if we change the
measuring unit for . The exact mathematical form
of a function f(x) depends on the exact choice of units
for measuring the s coordinates z',...,z* of x € R®.
If we replace each of these units by a new unit that is A
times larger, then the same physical value that was pre-
viously described by a numerical value z* will now be
described, in the new units, by a new numerical value
= J:k//\j. For example, if we replace centimeters
by inches, with A = 2.54, then z* = 5.08 cm becomes
¥ = % /X = 2in. After this transformation, z changes
toZ =x/A.

How will the expression for closeness f(#) change if we
use the new units? In terms of &, we have x = A - Z.
Thus, if we change the measuring unit for z, the same
dynamics that was originally represented by a function
f(z), will be described, in the new units, by a function

F(x) = F(A-a).

Since we assumed that we have no information about
the cluster radii, there is no reason why one choice
of unit should be preferable to the other. Therefore,
it is reasonable to assume that the relative quality of
different families should not change if we simply change
the units, 1.e., if the family F' is better than a family
G, then the transformed family F should also be better
than the family G.



The criterion must not change if we apply a ro-
tation. Similarly, it is reasonable to require that the
relative quality of two different families of functions do
not change if we apply an arbitrary rotation around 0
in s-dimensional space R°.

We are now ready for the formal definitions.

Definition 1.

e By a famuly F', we mean a differentiable function

f(z) from R’ to R.

o We say that a function e(x) belongs to the family
f(x) (or that f(x) contains the function e(x)) if
e(x) = C - f(x) for some C' > 0.

e Two families F' and GG are considered equal if they

contain the same functions.

Denotation. Let’s denote the set of all possible fami-
lies by ®.

o the set of all pairs (F, F») of elements Fy € @,
Iy € @, is usually denoted by & x &.

e An arbitrary subset R of a set of pairs ® x & is
called a relation on the set ®. If (Fy, Fa) € R, it
is said that Fy and F5 are in relation R; this fact
is denoted by Fy RF5.

Definition 2. A pair of relations (<,~) on a set ® is
called consistent if it satisfies the following conditions,
for every F,G,H € ®:

(1) ifF<GandG<chenF<H;

if '~ G then G~ F;

if F~G and G~ H then F' ~ H;
if ¥ <G and G~ H then F' < H;
ifF~Gand G < H then F' < H;

if ' < (G then it is not true that G < F', and it
is not true that F ~ (.

Definition 3. Assume a set ® is given. Its elements
will be called alternatives.

e By an optimality criterion, we mean a consistent
pair (<,~) of relations on the set ® of all alter-
natives.

— If F = G we say that I is better than G;

— if F ~ ( we say that the alternatives F
and G are equivalent with respect to this
criterion.

o We say that an alternative I is optimal (or best)
with respect to a criterion (<, ~) if for every other
alternative GG either F' - G or F' ~ (.

e We say that a criterion is final if there exists an
optimal alternative, and this optimal alternative
1s unique.

Comment. In this paper, we will consider optimality
criteria on the set @ of all families.

Definition 4. Let A > 0 be a positive real number.

e By a A-rescaling of a function f(x) we mean a
function f(z) = f(A - z).
e By a A-rescaling of a family of functions F' we

mean the family consisting of A-rescalings of all
functions from F'.

Denotation. A-rescaling of a family F' will be denoted

by RA(F)

Definition 5. We say that an optimality criterion on
D is unit-invariant if for every two families F' and GG and
for every number A > 0, the following two conditions
are true:

i) if F is better than G in the sense of this criterion

(i.e.,, '~ G), then RA\(F) = RA(G);

i) if F' is equivalent to G in the sense of this criterion

(i.e., '~ G), then Ry\(F) ~ Ry\(G).

Definition 6. Let T : R® — R*® be a rotation around
0 in s-dimensional space.

e By a T-rotation of a function f(x) we mean a
function f(x) = f(Tz).
e By a T-rotation of a family of functions F' we

mean the family consisting of T-rotations of all
functions from F'.

Denotation. T-rotation of a family F' around 0 will

be denoted by T'(F').

Definition 7. We say that an optimality criterion on
D is rotation-invariant if for every two families F' and G
and for every rotation T, the following two conditions
are true:

i) if F is better than G in the sense of this criterion

(ie.,, '~ G), then T(F) = T(G);

i) if F' is equivalent to G in the sense of this criterion

(ie., '~ G), then T(F) ~ T(G).

Comment. As we have already remarked, the demands
that the optimality criterion is final, unit-invariant, and
rotation invariant are quite reasonable. At first glance
they may seem rather trivial and therefore weak, be-
cause these demands do not specify the exact opti-
mality criterion. However, these demands are strong
enough, as the following theorem shows:

Theorem 1. If a family F' is optimal in the sense of
some optimality criterion that is final, unit-invariant,
and rotation-invariant, then every function f(x) from
this family F has the form C-|z|* for some real numbers

C and «o.

Comments.

e Thus, our general approach provides a precise



mathematical justification for the (highly suc-
cessful) potential functions used in Fuzzy C-
Means approach.

e Since none of the optimal functions are from the
interval [0, 1], our result explains why we cannot
restrict ourselves to membership functions f(z),
and why we need to consider the potential func-
tions which can attain values outside the interval

[0, 1].

e The proofs are presented in detail in our Tech-
nical Report [17]. For the case when we have
the prior knowledge of the cluster radius, a sim-
ilar approach explains the potential functions
f(z) = exp(—a - |z|) and f(z) = exp(—a - |2]?).
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