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Abstract: Knowledge acquisition is when we ask experts questions,
and put the answers into a computer system. Since this is a very time-
consuming task, it is desirable to minimize the effort of an expert.

As a crude estimate for this effort, we can take a number of binary
(yes-no) questions that we ask. The procedure that minimizes this num-
ber is binary search.

This approach does not take into account that people often feel more
comfortable answering “yes” than answering “no”. So, to make our esti-
mates more realistic, we will take into consideration that for a negative
answer the effort is bigger.

This paper describes a procedure that minimizes the effort of an ex-
pert. We also estimate the effort of this “optimal” search procedure.
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1 Introduction to the Problem

1.1 Informal Introduction

Knowledge acquisition is when we ask experts questions, and put the answers
into the computer system. It is a very time-consuming and therefore expensive
task. Thus, it is desirable to minimize the effort of an expert.

How do we estimate this effort? A reasonable way to do it is to estimate the
effort by a number of questions. Of course, we can always ask just one question like
“Please explain everything you know.” A reasonable idea is to estimate the effort
by the total number of binary questions, i.e., yes-no questions for which there are
exactly two answers, “yes” and “no”.

We will consider only the case when we know all possible alternatives, and we
want to know which one of them is correct.

For example, suppose we know that we need to prescribe an analgesic to a
patient, but we do not know which one to prescribe for this particular patient. If
we have four alternatives, what is the right sequence of questions to ask in order to
minimize the number of questions?

There exists a methodology called the binary search that helps to choose the
minimal number of questions: if initially we had N mutually exclusive alternatives,
then we ask the first “yes”-“no” question so that for half of these alternatives the
answer is “yes”, and for the other half the answer is “no”. This way on each
step we halve the set of alternatives, and in log2(N) questions we narrow it down
to one. It has been proved that by using this sequence of questions, we ask the
smallest possible number of questions. This is explained in practically any book on
algorithms and complexity; see, e.g. Cormen et al. (2001).

The main problem with this approach is that it does not take into consideration
a well-known psychological fact that most people feel more comfortable answering
“yes” than answering “no” (see, e.g., Carnegie (1990)). One of the reasons for this
phenomenon is the following:
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• The expert’s time is valuable; because of this, the expert is usually asked to
help only in most complex situations. For example, a medical expert would be
normally called when an unusual situation happens. In this case, the expert
expects to find competent people who, generally, know the answers to typical
questions in his area of expertise, but who are puzzled by this particular
unusual problem. In such situations, an expert is usually informed about the
previous decisions and ideas of future decisions, and usually, he approves most
of these decisions.

• If it so happens that half of the previous decisions were wrong, it usually
means that the previous decision-makers were incompetent; in such situations,
the expert feels that his valuable time was wasted because the appropriate
solution is not to call a highly skilled expert, but rather to replace the existing
decision makers with more competent people.

Similarly:

• When a knowledge engineer who interviews the expert asks him questions for
which most answers are “yes”, this shows that the knowledge engineer already
has some preliminary knowledge of the area, and he is appropriately asking
these questions to improve this knowledge.

• If, on the other hand, the knowledge engineer would start asking random
questions, this would indicate that this engineer did not even bother to get
some preliminary knowledge and therefore, the highly skilled expert is inap-
propriately used to answer questions some of which could be answered by
simply consulting a textbook or a less skilled professional.

The larger the number of negative answers, the more discomfort the expert will
experience, and the larger effort he will have to make to continue this interview.

In view of this phenomenon, instead of minimizing the total number of questions,
it is more reasonable to minimize the effort of an expert, and in calculating this
effort to assign more weight to “no” answers than to “yes” ones.

In this paper, we will formalize and solve this problem.

Comment. Our preliminary results first appeared in Kamoroff (1993).

1.2 Towards Formalizing the Problem

In order to formalize the problem of selecting the best search procedure, we must
first formalize the notion of a search procedure.

Initially, we have some finite set of alternatives, between which we will choose.
We will denote this set by S (S for set).

If this set contains more than one alternative, then we must ask an expert a
question (and the question is supplied by this search procedure). The effect of
this question is that the original set of alternatives is separated into two subsets
S = A(0) ∪A(1):

• the set of all alternatives for which the answer is “yes”; we will denote this
set by A(1) (1 stands for “yes”, just like in the majority of computers);
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• the set of all alternatives, for which the answer is “no”; we will denote this
set by A(0).

After asking this question, we thus know whether the (initially unknown) alternative
a ∈ S belongs to the set A(0) or to the set A(1). This is the only result of asking
the question, so for our purposes, it does not matter how exactly this question was
formulated: what matters is how the answer to this question divides the set of
possible alternatives, i.e., what are the sets A(0) and A(1).

In principle, it is possible to ask a question in such an ambiguous way that
for certain alternatives a ∈ S, both answers “yes” and “no” are possible, i.e., in
mathematical terms, A(0) ∩ A(1) 6= ∅. However, we are looking for an optimal
(fastest) ways of eliciting knowledge. So, if we ask, instead, a new question in
which A′(0) = A(0) and A′(1) = S−A(0), then, since A′(1) ⊂ A(1), this new ques-
tions narrows down an alternative even better. Therefore, since we are interested
in finding the fastest elicitation method, it is sufficient to consider unambiguous
questions for which A(a) ∩A(1) = ∅.

It is also possible, in principle, to have trivial questions to which the answer
is always “yes” or always “no”, i.e., for which either A(1) = S and A(0) = ∅, or
A(0) = S and A(1) = ∅. Such trivial question does not add any information and can
therefore be skipped. Therefore, since we are interested in the fastest knowledge
elicitation, it makes sense to consider only pairs 〈A(0), A(1)〉 for which both sets
A(0) and A(1) are non-empty.

If each of the sets A(0) and A(1) contains only one alternative, then there is no
need to ask any further questions. If one (or both) of the resulting sets A(0) and
A(1) contains more than one alternative, then we must continue asking questions.
If the answer to the first question was “yes” (i.e., if we are in the set A(1)), then
after the second question, the set A(1) is divided into two subsets:

• The set of all alternatives that correspond to answer “yes” to both questions;
we will denote this set by A(11).

• The set of all alternatives for which the answers to the first two questions are
correspondingly “yes” and “no”; we will denote this set by A(10).

In general, for every sequence ω1ω2 . . . ωk of 0’s and 1’s, A(ω1ω2 . . . ωk) will denote
the set of all alternatives which are possible after we received answers ω1, ω2, . . . , ωk

to the first k questions. In particular, for an empty sequence Λ, we have A(Λ) = S.
Similarly to the above text, we can argue that since we select an optimal search

procedure, it is sufficient to consider, for every ω, only subdivisions A(ω) = A(ω0)∪
A(ω1) for which A(ω0) ∩A(ω1) = ∅, A(ω0) 6= ∅, and A(ω1) 6= ∅.

For each search procedure P and for every alternative a ∈ S, there exists a
sequence ω = ω1 . . . ωk for which A(ω) = {a}; we will denote this sequence by
ω(a, P ). We will assign, to each “no” answer, a weight W0, and to each “yes”
answer, a weight W1 < W0. Then, for each alternative a, we can compute the total
effort by adding the weights corresponding to all the answer from the sequence
ω(a, P ). For different alternatives, the effort may be different. As a numerical
characteristic of the quality of a search procedure, we will take the worst-case
effort, i.e., the largest of the efforts corresponding to different alternatives. Our
goal is to find the search procedure for which this effort is the smallest possible.

Now, we are ready for the formal definitions.
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1.3 Formal Definitions

Denotations.

• By {0, 1}∗ we mean the set of all finite sequences ω = ω1ω2 . . . ωk of 0’s and
1’s. The i-th element of the sequence ω will be denoted by ωi. An empty
sequence will be denoted by Λ.

• By |S| we mean the number of elements in a set S.

Definition 1. Let S be a finite set. Elements of the set S will be called alternatives.
By a search procedure P for the set S we mean a pair P = 〈Ω, A〉, where:

• Ω is a finite subset of {0, 1}∗,
• A is a function from Ω to the set 2S − {∅} of all nonempty subsets of S,

and the following two properties hold:

• Λ ∈ Ω and A(Λ) = S;

• For every ω ∈ Ω:

• if |A(ω)| = 1, then no extension of ω belongs to Ω;
• otherwise (i.e., if |A(ω)| > 1), both extensions ω0 and ω1 belong to Ω,

and we have

A(ω) = A(ω0) ∪A(ω1), A(ω0) ∩A(ω1) = ∅,
A(ω0) 6= ∅, and A(ω1) 6= ∅.

Comment. One can easily prove that for every search procedure P and for every
alternative a ∈ S, there exists a sequence ω ∈ Ω for which A(ω) = {a}; this
sequence will be denoted by ω(a, P ). We will also say that this sequence ω leads
to a.

Definition 2. Let W0 > W1 be two positive real numbers.

• We will call W0 the weight of a “no” answer and W1 the weight of a “yes”
answer.

• By the weight of a binary sequence ω = ω1ω2 . . . ωk we mean the sum

W (ω) =
k∑

i=1

Wωi .

• For every search procedure P and for every alternative a ∈ S, the weight
W (ω(a, P )) of the sequence which leads to a will be called the weight of the
alternative a in the procedure P .

• By an effort of a procedure P we mean E(P ) = max
a∈S

W (ω(a, P )).

• Let N = |S|, W0, and W1 be given. We say that P0 is an optimal search
procedure if

E(P0) = min
P :|P |=N

E(P ),

where the minimum is taken over all search procedures over S. This minimum
will be denoted by T (N).
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1.4 Example 1: binary search (optimal for W0 = W1)

To illustrate the above definitions, let us consider a simple example in which
a doctor has to choose between N = 4 possible analgetics: aspirin (as), ac-
etaminophen (ac), ibuprofen (ib), and valium (va).

For this example, the standard binary search will lead, e.g., to the following
search procedure P1:

A(Λ)
n

ssssssssss
y

KKKKKKKKKK

A(0)
n

wwwwwwww
y

KKKKKKKKKK
A(1)

n

ssssssssss
y

GGGGGGGG

A(00) A(01)A(10) A(11)
as ac ib va

Before we ask any questions (k = 0), S = {as, ac, ib, va}. After we ask the first
question (k = 1), the N = 4 alternatives are partitioned into two sets:

• the set A(0) = {as, ac} corresponding to the “no” answer, and

• the set A(1) = {ib, va} corresponding to the “yes” answer.

Here, A(1) ∪A(0) = S, A(1) ∩A(0) = ∅, and |A(1)| = |A(0)| = 2.
After the second question is asked (k = 2):

• the set A(0) is partitioned into the two sets A(00) and A(01) so that

A(00) ∪A(01) = A(0) and A(00) ∩A(01) = ∅,
and

• the set A(1) is partitioned into the two sets A(10) and A(11) such that

A(10) ∪A(11) = A(1) and A(10) ∩A(11) = ∅.

After two questions have been asked, we have A(00) = {as}, A(01) = {ac}, A(10) =
{ib}, and A(11) = {va}. No further questions are needed.

Binary search is the best algorithm for the case of equal weights, when, e.g.,
W0 = W1 = 1. In this case, W (ω(a, P1)) = 2 for all four alternatives a, so E(P1) =
2. For these weights, P1 is the optimal procedure.

1.5 Example 2: a search procedure which is better than binary search (W0 > W1)

If W0 > W1, the binary search procedure P1 may be not optimal. Indeed,
e.g., when W1 = 1 and W0 = 3, we have W (ω(as, P1)) = 6, W (ω(ac, P1)) = 4,
W (ω(ib, P1)) = 4, and W (ω(va, P1)) = 2; hence, the effort E(P1) (which is defined
as the largest of the weights of all alternatives) is equal to E(P1) = 6.
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We can decrease the effort by applying a different search procedure P2:

A(Λ)
n

wwwwwwww
y

IIIIIIIII

A(0) A(1)
n

uuuuuuuuu
y

IIIIIIIIIas

A(10) A(11)
n

uuuuuuuuu
y

IIIIIIIIIac

A(110) A(111)

ib va

For this search procedure,

W (ω(as, P2)) = 3, W (ω(ac, P2)) = 4,

W (ω(ib, P2)) = 5, W (ω(va, P2)) = 3,

and therefore E(P2) = 5.

1.6 What we are planning to do

In this paper, we describe two results:

• first, we describe the algorithm which finds, for every N , W1, and W0 > W1,
the optimal search procedure;

• second, we will describe an even faster algorithm which computes the asymp-
totically optimal search procedure.

Comment. In our analysis, we will use the techniques used in the analysis of
different search procedures; see, e.g., Cormen et al. (2001); Horowitz and Sahni
(1983); Knuth (1998); Nievergelt (1977); Stanfel (1970)

2 Description of the optimal search procedure

Let us first describe the result which helps to compute T (N):

Proposition 1.

T (N) = min
0<N+<N

{max{W1 + T (N+),W0 + T (N −N+)}}.

Comment. For reader’s convenience, all the proofs are placed in the last section of
this paper.
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This proposition leads to the following dynamic programming-type algorithm for
computing T (N) for a given N : In order to compute T (N), we compute T (1), T (2),
. . . , T (N) as follows:

• when N = 1, we take T (1) := 0 (if there is only one alternative, no questions
need to be asked).

• if we already know T (1) through T (n− 1), then we can use the formula from
Proposition 1 to compute T (n).

To compute T (N), we need N iterations, on each of which we perform ≤ c · N
arithmetic operations; thus, we can compute T (N) in time O(N2).

Since we are interested not only in finding T (N), we can, at each step, not only
compute T (n), but record the value N+(n) for which the expression

max{W1 + T (N+), W0 + T (n−N+)}

attains its minimum. Then, in designing a procedure, we divide a set A(ω) of size
n into sets A(ω1) of sizes N+(n) and A(ω0) of size n − N+(n). We arrive at the
following algorithm for designing the optimal search procedure:

Algorithm A. Suppose that we are given a set S with |S| = N alternatives, and
the weights W0 > W1. Then, to develop the search procedure, we first sequentially
compute the values

T (1), N+(1), . . . , T (N), N+(N).

After that, we construct the search procedure as follows.
The search procedure is defined as a pair consisting of the set Ω of binary

sequence and a function A : Ω → 2S . In our algorithm, we will start with an empty
set Ω and then add sequences to this set. As we add a sequence ω to the set Ω, we
will also define the corresponding value A(ω). To be more precise, at each stage of
our algorithm, we will have two sets:

• a set Ω, with a function A : Ω → 2S , and

• a set Ω0 of sequences ω which we have already added to Ω and for which we
still need to analyze “children” ω0 and ω1.

We start with Ω = Ω0 = ∅. Then, we add the empty sequence Λ to the set Ω, take
A(Λ) = S, and add Λ to the set Ω0. At each step of the algorithm, if Ω0 6= ∅, we
do the following for each sequence ω ∈ Ω0:

• if |A(ω)| = 1, then no further questions are necessary, so we simply delete the
sequence ω from the set Ω0;

• if N(ω) = |A(ω)| > 1, then we:

• add both children ω1 and ω0 to the set Ω;

• select the corresponding question so that for N+(N(ω)) of the alterna-
tives the answer is “yes”, and for N − N+(N(ω)) of the alternatives
the answer is “no”, i.e., so that |A(ω1)| = N+(N(ω)) and |A(ω0)| =
N −N+(N(ω));
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• delete ω from the set Ω0 of all sequences for which we are need to analyze
children, and add the children ω0 and ω1 to this set.

The construction ends when Ω0 = ∅.
Proposition 2. For every N , W0, and W1 < W0, Algorithm A designs the optimal
search procedure.

Example. Let us show how this algorithm works for the above example, in which
N = 4, W0 = 3, and W1 = 1.

According to the above Algorithm A, we first compute the values T (n) and
N+(n):

• We take T (1) = 0.

• When n = 2, the only possible value for N+ is N+ = 1, so

T (2) = min
0<N+<2

{max{1 + T (N+), 3 + T (2−N+)}} =

max{1 + T (1), 3 + T (1)} = max{1, 3} = 3.

Here, N+(2) = 1.

• To find T (3), we must compare two different values N+ = 1 and N+ = 2:

T (3) = min
0<N+<N

{max{1 + T (N+), 3 + T (3−N+)}} =

min{max{1 + T (1), 3 + T (2)},
max{1 + T (2), 3 + T (1)}} =

min{max{1, 6},max{4, 3}} = min{6, 4} = 4.

Here, the minimum is attained when N+ = 2, so N+(3) = 2.

• To find T (4), we must consider three possible values N+ = 1, N+ = 2, and
N+ = 3, so

T (4) = min
0<N+<N

{max{1 + T (N+), 3 + T (4−N+)}} =

min{max{1 + T (1), 3 + T (3)}, max{1 + T (2), 3 + T (2)},
max{1 + T (3), 3 + T (1)}} =

min{max{1, 7}, max{4, 6}, max{5, 3}} =

min{7, 6, 5} = 5.

Here, the minimum is attained when N+ = 3, so N+(4) = 3.

Now, we can start forming the optimal search procedure. We start with Ω = Ω0 = ∅.
Then, we add the empty sequence Λ to the set Ω, take A(Λ) = S, and add Λ to
the set Ω0.

The set Ω0 consists of only one sequence ω = Λ. For this sequence, N(Λ) =
|A(Λ)| = |S| = 4 > 1, so we:
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• add both its children 1 and 0 to the set Ω; now, Ω = {Λ, 0, 1};
• since N+(N(Λ)) = N+(4) = 3, we select the corresponding question so that
|A(1)| = 3 and |A(0)| = 4−3 = 1; for example, we can take A(1) = {ab, ic, va}
and A(0) = {as};

• we delete Λ from the set Ω0, and add its children 0 and 1 to this set; now,
Ω0 = {0, 1}.

At this point, the subdivision looks as follows:

S

3

{{
{{

{{
{{

1

CC
CC

CC
CC

A(0) A(1)
{as} {ab, ic, va}

Now, in accordance with Algorithm A, we have to consider both sequences 0 and 1
from the set Ω0. For ω = 0, we have |A(0)| = 1, so we simply delete this sequence
0 from the set Ω0. For ω = 1, N(1) = |A(1)| = 3 > 1, so we:

• add both its children 11 and 10 to the set Ω; now, Ω = {Λ, 0, 1, 10, 11};
• since N+(N(11)) = N+(3) = 2, we select the corresponding question so that
|A(11)| = 2 and |A(10)| = 3−2 = 1; for example, we can take A(11) = {ic, va}
and A(10) = {ab};

• we delete 1 from the set Ω0, and add its children 10 and 11 to this set; now,
Ω0 = {10, 11}.

At this point, the subdivision looks as follows:

S

3

vvvvvvvvv
1

HHHHHHHHH

{as}
A(0) A(1)

3

wwwwwwww
1

GGGGGGGG

{ab}
A(10) A(11)

{ic, va}

In accordance with Algorithm A, we have to consider both sequences 10 and 11 from
the set Ω0. For ω = 10, we have |A(10)| = 1, so we simply delete this sequence 10
from the set Ω0. For ω = 11, N(11) = |A(11)| = 2 > 1, so we:

• add both its children 110 and 111 to the set Ω; now,

Ω = {Λ, 0, 1, 10, 11, 110, 111};
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• since N+(N(11)) = N+(2) = 1, we select the corresponding question so that
|A(111)| = 1 and |A(110)| = 2−1 = 1; for example, we can take A(111) = {ic}
and A(10) = {va};

• we delete 11 from the set Ω0, and add its children 110 and 111 to this set;
now, Ω0 = {110, 111}.

At this point, the subdivision looks exactly like the Procedure P2.
In accordance with Algorithm A, we have to consider both sequences 110 and

111 from the set Ω0. For both sequences ω, we have |A(ω)| = 1, so we simply delete
both sequences from the set Ω0. Now, Ω0 = ∅, so the algorithm stops.

The resulting procedure is thus optimal. For this search procedure, E(P2) = 5.

3 Description of the asymptotically optimal search procedure

The above algorithm computes the optimal search procedure in O(N2) time. It
is feasible, but for large N , N2 computational steps may be still too many. So,
to decrease the number of computation steps, we will describe an asymptotically
optimal search algorithm which can be designed even faster. This algorithm is
based on the following estimate:

Denotation. By f(n) ³ g(n) we mean that there exists a constant C > 0 such
that |f(n)− g(n)| ≤ C for all n.

Proposition 3. For each W0 and W1, T (N) ³ K · log2(N), where K ≥ 0 is the
solution of the following equation: 2−W0/K + 2−W1/K = 1.

When W0 = W1, this equation has a clear solution K = W0 = W1. In this
case, the total effort is asymptotically equal to the effort of a single question (W0 =
W1) times the number of questions (i.e., the amount of information necessary to
determine the alternative).

In general, it is easy to prove that this equation has a solution, and that this
solution is unique: its left-hand side is increasing in K. For K = 0, the left-hand
side is equal to 0; for K →∞, it tends to 2. Since a continuous function attains all
intermediate values, it has to be equal to 1 for some K; since the left-hand side is
strictly increasing, it is equal to 1 for only one K.

In order to find this K, we can, e.g., use bisection (see, e.g., Cormen et al.
(2001)) to find α = 2−W1/K from the equation α + αw = 1, where w = W0/W1.
Then, we can compute K as K = −W1/(log2(α)). Let us give two examples:

• When W0 = W1 = 1, we have w = 1, and the equation turns into 2α = 1. So,
α = 0.5, and K = 1.

• When W0 = 2W1, we have w = 2, and the equation turns into α + α2 = 1.

Its solution is the well-known golden ratio α =
√

5− 1
2

≈ 0.618. So, in such
a situation, the optimal portion of “yes” answers coincides with the golden
ratio.

The algorithm itself is similar to the above Algorithm A, with the only difference
that instead of the exact value N+(n), we use an approximate value bα · nc:
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Algorithm B. Suppose that we are given a set S with |S| = N alternatives, and
the weights W0 > W1. Then, to develop the search procedure, we first find α. After
that, we construct the search procedure as follows.

The search procedure is defined as a pair consisting of the set Ω of binary
sequence and a function A : Ω → 2S . In our algorithm, we will start with an empty
set Ω and then add sequences to this set. As we add a sequence ω to the set Ω, we
will also define the corresponding value A(ω). To be more precise, at each stage of
our algorithm, we will have two sets:

• a set Ω, with a function A : Ω → 2S , and

• a set Ω0 of sequences ω which we have already added to Ω and for which we
still need to analyze “children” ω0 and ω1.

We start with Ω = Ω0 = ∅. Then, we add the empty sequence Λ to the set Ω, take
A(Λ) = S, and add Λ to the set Ω0. At each step of the algorithm, if Ω0 6= ∅, we
do the following for each sequence ω ∈ Ω0:

• if |A(ω)| = 1, then no further questions are necessary, so we simply delete the
sequence ω from the set Ω0;

• if N(ω) = |A(ω)| > 1, then we:

• add both children ω1 and ω0 to the set Ω;

• select the corresponding question so that for
bα ·N(ω)c of the alternatives the answer is “yes”, and for N−bα ·N(ω)c
of the alternatives the answer is “no”, i.e., so that |A(ω1)| = bα ·N(ω)c
and |A(ω0)| = N − bα ·N(ω)c;

• delete ω from the set Ω0 of all sequences for which we are need to analyze
children, and add the children ω0 and ω1 to this set.

The construction ends when Ω0 = ∅.
Definition 3. We say that an algorithm produces an asymptotically optimal search
method if for every N , W0, and W1, the search procedures P (N) produced by this
algorithm satisfy the property E(P (N)) ³ T (N).

Proposition 4. For every N , W0, and W1 < W0, Algorithm B produces the
asymptotically optimal search procedure.

4 Statistical approach

4.1 Formulation of the problem

Instead of the worst-case effort E(P ), we can optimize the average effort Ea(P ):

Definition 4. Let W0 > W1 be two positive real numbers, and S is a set with N
elements.



Asymmetric information measures 13

• By an average effort of a procedure P over S, we mean

Ea(P ) =
1
N
·
∑

a∈S

W (ω(a, P )).

• We say that P0 is a statistically optimal search procedure if

Ea(P0) = min
P :|P |=N

Ea(P ),

where the minimum is taken over all search procedures over S. This minimum
will be denoted by T a(N).

4.2 Statistically optimal search procedure

Proposition 5.

T a(N) = min
0<N+<N

{
N+

N
· (W1 + T a(N+)) +

N −N+

N
· (W0 + T a(N −N+))

}
.

This proposition leads to the following dynamic programming-type algorithm for
computing T a(N) for a given N : In order to compute T a(N), we compute T a(1),
T a(2), . . . , T a(N) as follows:

• when N = 1, we take T a(1) := 0 (if there is only one alternative, no questions
need to be asked).

• if we already know T a(1) through T a(n − 1), then we can use the formula
from Proposition 5 to compute T a(n).

To compute T a(N), we need N iterations, on each of which we perform ≤ c · N
arithmetic operations; thus, we can compute T a(N) in time O(N2).

To design a statistically optimal algorithm, we must, at each step, not only com-
pute T a(n), but record the value Na

+(n) for which the expression from Proposition
5 attains its minimum. Then, in designing a procedure, we divide a set A(ω) of
size n into sets A(ω1) of sizes Na

+(n) and A(ω0) of size n − Na
+(n). We arrive at

the following algorithm for designing the optimal search procedure:

Algorithm C. Suppose that we are given a set S with |S| = N alternatives, and
the weights W0 > W1. Then, to develop the search procedure, we first sequentially
compute the values

T a(1), Na
+(1), . . . , T a(N), Na

+(N).

After that, we construct the search procedure as follows.
The search procedure is defined as a pair consisting of the set Ω of binary

sequence and a function A : Ω → 2S . In our algorithm, we will start with an empty
set Ω and then add sequences to this set. As we add a sequence ω to the set Ω, we
will also define the corresponding value A(ω). To be more precise, at each stage of
our algorithm, we will have two sets:

• a set Ω, with a function A : Ω → 2S , and
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• a set Ω0 of sequences ω which we have already added to Ω and for which we
still need to analyze “children” ω0 and ω1.

We start with Ω = Ω0 = ∅. Then, we add the empty sequence Λ to the set Ω, take
A(Λ) = S, and add Λ to the set Ω0. At each step of the algorithm, if Ω0 6= ∅, we
do the following for each sequence ω ∈ Ω0:

• if |A(ω)| = 1, then no further questions are necessary, so we simply delete the
sequence ω from the set Ω0;

• if N(ω) = |A(ω)| > 1, then we:

• add both children ω1 and ω0 to the set Ω;

• select the corresponding question so that for Na
+(N(ω)) of the alterna-

tives the answer is “yes”, and for N − Na
+(N(ω)) of the alternatives

the answer is “no”, i.e., so that |A(ω1)| = Na
+(N(ω)) and |A(ω0)| =

N −Na
+(N(ω));

• delete ω from the set Ω0 of all sequences for which we are need to analyze
children, and add the children ω0 and ω1 to this set.

The construction ends when Ω0 = ∅.
Proposition 6. For every N , W0, and W1 < W0, Algorithm C designs the statis-
tically optimal search procedure.

4.3 Asymptotically statistically optimal search procedure

The above Algorithm C computes the optimal search procedure in O(N2) time.
It is feasible, but for large N , similarly to the worst-case effort, N2 computational
steps may be still too many. So, to decrease the number of computation steps,
we will describe an asymptotically optimal search algorithm which can be designed
even faster. This algorithm is based on the following estimate:

Proposition 7. For each W0 and W1, T a(N) ³ Ka · log2(N), where Ka ≥ 0 and
αa are the solution of the following system of equations:

αa ·W1 + (1− αa) ·W0 + Ka · (αa · log2(α
a) + (1− αa) · log2(1− αa)) = 0;

W0 −W1 = Ka · (log2(α
a)− log2(1− αa)).

Comments.

• Since αa and 1− αa are the probabilities of the “yes” and “no” answers, the
first equation has a clear information meaning: it says that

Ka =
αa ·W1 + (1− αa) ·W0

−αa · log2(αa)− (1− αa) · log2(1− αa)
,

i.e., that Ka is equal to the average effort divided by the entropy of the
corresponding probability distribution.
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• Substituting this expression for Ka into the second equation, we get a single
equation for a single unknown αa.

• Alternatively, we can use the second equation to express αa in terms of Ka:
namely,

log2

(
αa

1− αa

)
=

W0 −W1

Ka
,

hence
1− αa

αa
=

1
αa

− 1 = 2−(W0−W1)/Ka

,

and
αa =

1
1 + 2−(W0−W1)/Ka .

Substituting this expression for αa into the first equation, we get a single
equation for a single unknown Ka.

• The algorithm itself is similar to the above Algorithm C, with the only dif-
ference that instead of the exact value Na

+(n), we use an approximate value
bαa · nc:

Algorithm D. Suppose that we are given a set S with |S| = N alternatives, and
the weights W0 > W1. Then, to develop the search procedure, we first find αa.
After that, we construct the search procedure as follows.

The search procedure is defined as a pair consisting of the set Ω of binary
sequence and a function A : Ω → 2S . In our algorithm, we will start with an empty
set Ω and then add sequences to this set. As we add a sequence ω to the set Ω, we
will also define the corresponding value A(ω). To be more precise, at each stage of
our algorithm, we will have two sets:

• a set Ω, with a function A : Ω → 2S , and

• a set Ω0 of sequences ω which we have already added to Ω and for which we
still need to analyze “children” ω0 and ω1.

We start with Ω = Ω0 = ∅. Then, we add the empty sequence Λ to the set Ω, take
A(Λ) = S, and add Λ to the set Ω0. At each step of the algorithm, if Ω0 6= ∅, we
do the following for each sequence ω ∈ Ω0:

• if |A(ω)| = 1, then no further questions are necessary, so we simply delete the
sequence ω from the set Ω0;

• if N(ω) = |A(ω)| > 1, then we:

• add both children ω1 and ω0 to the set Ω;

• select the corresponding question so that for
bαa ·N(ω)c of the alternatives the answer is “yes”, and for N−bαa·N(ω)c
of the alternatives the answer is “no”, i.e., so that |A(ω1)| = bαa ·N(ω)c
and |A(ω0)| = N − bαa ·N(ω)c;

• delete ω from the set Ω0 of all sequences for which we are need to analyze
children, and add the children ω0 and ω1 to this set.
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The construction ends when Ω0 = ∅.
Proposition 8. For every N , W0, and W1 < W0, Algorithm D produces the
asymptotically statistically optimal search procedure.

5 Proofs

5.1 Proof of Proposition 1

The proof of this proposition is similar to standard dynamic programming-type
proofs (see, e.g., Cormen et al. (2001)). Namely, in any search procedure, we
subdivide the original set S with N elements into two subsets A(1) and A(0). Let
N+ denote the number of elements in the set A(1); then the number of elements in
the set A(0) is N −N+.

• If the alternative is in the set A(1), then we spend W1 on asking the first
question, and then we spend T (N+) to look for this alternative in the set
A(1) with N+ elements. Thus, for such alternatives, the largest possible
effort is equal to W1 + T (N+).

• Similarly, the largest possible weight for alternatives from A(0) is

W0 + T (N −N+).

Overall, for any choice of N+, the largest possible effort is equal to

max{W1 + T (N+),W0 + T (N −N+)}.

Thus, the optimal search method corresponds to the choice of N+ for which this
effort is the smallest possible. The proposition is thus proven.

5.2 Proof of Proposition 2

The proof of this proposition is also similar to standard dynamic programming-
type proofs (see, e.g., Cormen et al. (2001)).

5.3 Proof of Propositions 3 and 4

General idea. Let us denote the search procedure generated by Algorithm B for a
given N by BN . We will prove that there exist constants C > 0 and C1 > 0 such
that for every N , we have

K · log2(N) ≤ T (N)

and
P (BN ) ≤ K · log2(N) + C − C1

N
.

By definition, T (N) is the smallest effort of all possible procedures, thus, T (N) ≤
P (BN ). So, if we prove the above two inequalities, we will indeed complete the
proof of Propositions 3 and 4.
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Proof of the first inequality. Let us first prove the first inequality by induction over
N . The value N = 1 represents the induction base. For this value, K · log2(1) =
0 = T (1), so the inequality holds.

Let us now describe the induction step. Suppose that we have already proved the
inequality K · log2(n) ≤ T (n) for all n < N . Let us prove that K · log2(N) ≤ T (N).

Due to Proposition 1, T (N) is the smallest of the values

max{W1 + T (N+),W0 + T (N −N+)}

over N+ = 1, 2, . . . , N − 1. So, to prove that K · log2(N) is indeed the lower bound
for T (N), we must prove that K · log2(N) cannot exceed each of these values, i.e.,
that

K · log2(N) ≤ max{W1 + T (N+),W0 + T (N −N+)}
for every N+ = 1, 2, . . . , N − 1. For these N+, we have N+ < N and N −N+ < N ,
so for all these values, we already know that K · log2(N+) ≤ T (N+) and

K · log2(N −N+) ≤ T (N −N+).

Therefore,
W1 + K · log2(N+) ≤ W1 + T (N+),

W0 + K · log2(N −N+) ≤ W0 + T (N −N+),

and
max{W1 + K · log2(N+),W0 + K · log2(N −N+)} ≤

max{W1 + T (N+),W0 + T (N −N+)}.
So, to prove the desired inequality, it is sufficient to prove that

K · log2(N) ≤

max{W1 + K · log2(N+),W0 + K · log2(N −N+)}.
We will prove this inequality by considering two possible cases: N+ ≤ α · N and
N+ ≥ α ·N :

• When N+ ≤ α ·N , we have N −N+ ≥ (1− α) ·N and therefore,

W0 + K · log2(N −N+) ≥ z,

where

z
def= W0 + K · log2((1− α) ·N) = W0 + K · log2(N) + K · log2(1− α).

Here, by definition of α, we have α = 2−W1/K , and by definition of K, we have
2−W1/K +2−W0/K = 1. Thus, 1−α = 2−W0/K , hence log2(1−α) = −W0/K,
hence W0 + K · log2(1− α) = 0, and so z = K · log2(N). In this case,

K · log2(N) ≤ z = W0 + K · log2(N −N+) ≤

max{W1 + K · log2(N+),W0 + K · log2(N −N+)}.
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• When N+ ≥ α ·N , we have W1 + K · log2(N+) ≥ z, where

z
def= W1 + K · log2(α ·N) = W1 + K · log2(N) + K · log2(α).

By definition of α, we have α = 2−W1/K , hence log2(α) = −W1/K, and
z = K · log2(N). So, in this case,

K · log2(N) ≤ z = W1 + K · log2(N+) ≤

max{W1 + K · log2(N+),W0 + K · log2(N −N+)}.

In both cases, we have the desired inequality. The induction step is proven, and so,
indeed, for every N , we have

K · log2(N) ≤ T (N).

Proof of the second inequality. Let us now prove that there exist real numbers
C > 0 and C1 > 0 for which, for all N ,

E(BN ) ≤ K · log2(N) + C − C1

N
.

To prove this inequality, we will pick a value N0, prove that this inequality holds
for all N ≤ N0, and then use mathematical induction to show that it holds for all
N > N0 as well.

Induction basis. Let us first find the conditions on C, C1, and N0 under which for
all N ≤ N0,

E(BN ) ≤ K · log2(N) + C − C1

N
.

Subtracting K · log2(N) and adding
C1

N
to both sides of the this inequality, we get

C ≥ C1

N
+ E(BN )−K · log2(N)

for all N from 1 to N0. So, to guarantee that this inequality holds, if we have
already chosen N0 and C1, we can choose

C = max
1≤N≤N0

(
C1

N
+ E(BN )−K · log2(N)

)
.

Induction step. Let us assume that for all n < N (where N > N0), we have proven
that

E(Bn) ≤ K · log2(n) + C − C1

n
.

We would like to conclude that

E(BN ) ≤ K · log2(N) + C − C1

N
.
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According to the definition of BN , we have

E(BN ) = max{W1 + E(BN+),W0 + E(BN−N+)},

where N+ = bα ·Nc. Due to induction hypothesis, we have

E(BN+) ≤ K · log2(N+) + C − C1

N+

and
E(BN−N+) ≤ K · log2(N −N+) + C − C1

N −N+
.

Therefore,

E(BN ) ≤ max
{

W1 + K · log2(N+) + C − C1

N+
,

W0 + K · log2(N −N+) + C − C1

N −N+

}
.

Thus, to complete the proof, it is sufficient to conclude that this maximum does
not exceed

K · log2(N) + C − C1

N
.

In other words, we must prove that

W1 + K · log2(N+) + C − C1

N+
≤ K · log2(N) + C − C1

N
(1)

and that

W1 + K · log2(N −N+) + C − C1

N −N+
≤ K · log2(N) + C − C1

N
.

Without losing generality, let us show how we can prove the first of these two
inequalities. Since N+ = bα · Nc, the left-hand side of the inequality (1) can be
rewritten as

W1 + K · log2(α ·N) + K · (log2(N+)− log2(α ·N)) + C − C1

N+
.

We already know that W1 +K · log2(α ·N) = K · log2(N). Thus, the left-hand side
of (1) takes the simpler form

K · log2(N) + K · (log2(N+)− log2(α ·N)) + C − C1

N+
.

Substituting this expression into (1) and canceling the terms K · log2(N) and C in
both sides, we get an equivalent inequality

K · (log2(N+)− log2(α ·N))− C1

N+
≤ −C1

N
. (2)

Let us further simplify this inequality. We will start by estimating the difference
log2(N+)−log2(α·N). To estimate this difference, we will use the intermediate value
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theorem, according to which, for every smooth function f(x), and for arbitrary two
values a and b, we have f(a)− f(b) = (a− b) · f ′(ξ) for some ξ ∈ [a, b]. In our case,

f(x) = log2(x) =
ln(x)
ln(2)

,

a = N+, and b = α ·N . Here,

f ′(ξ) =
1

ξ · ln(2)
,

so
f ′(ξ) ≤ 1

N+ · ln(2)
;

also, |a − b| ≤ 1, so, the difference log2(N+) − log2(α · N) can be estimated from
above by:

log2(N+)− log2(α ·N) ≤ 1
N+ · ln(2)

.

Hence, the above inequality holds if the following stronger inequality holds:

K

N+ · ln(2)
− C1

N+
≤ −C1

N
,

or, equivalently,
C1

N
≤ C1 −K/ ln(2)

N+
. (3)

Here, N+ ≥ α ·N − 1, i.e.,
N+

N
≥ α− 1

N+
.

When N → ∞, we have N+ → ∞ and
1

N+
→ 0. Thus, for every ε > 0, there

exists an N0 starting from which
1

N+
≤ ε and hence, N+ ≥ (α − ε) ·N . For such

sufficiently large N , the inequality (3) can be proven if we have

C1

N
≤ C1 −K/ ln(2)

(α− ε) ·N ,

i.e., if we have

C1 ≤ C1 −K/ ln(2)
α− ε

. (4)

Since α ≤ 1, for sufficiently large C1, this inequality is true. For such C1, therefore,
the induction can be proven and thus, Propositions 3 and 4 are true.

5.4 Proof of Propositions 5 and 6

The proof of these propositions is similar to standard dynamic programming-
type proofs (see, e.g., Cormen et al. (2001)).
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5.5 Proof of Propositions 7 and 8

This proof is similar to the above proof of Propositions 3 and 4. The only
difference is in the equation which describes Ka and αa. Let us show how these
equations can be obtained.

In the worst-case description, we were using the fact that for the desired K, the
function f(N) = K ·log2(N) satisfies the continuous-variable analog of the equation
from Proposition 1, i.e.,

f(N) = min
0<N+<N

F (N, N+),

where
F (N, N+) = max{W1 + f(N+), W0 + f(N −N+)}

and min is taken over all real numbers from the interval (0, N). In this equation,
this minimum is attained when N+ = α ·N .

Similarly, we are now looking for a function

fa(N) = Ka · log2(N)

which satisfies the continuous-variable analog of the equation from Proposition 5,
i.e., for which

fa(N) = min
0<N+<N

F a(N,N+),

where

F a(N,N+) def=
N+

N
· (W1 + fa(N+)) +

N −N+

N
· (W0 + fa(N −N+)),

min is taken over all real numbers from the interval (0, N), and minimum is attained
when N+ = αa ·N .

If we substitute fa(N) = Ka · log2(N) and N+ = αa · N into the minimized
expression F a(N,N+), we conclude that

F a(N, N+) = αa · (W1 + Ka · log2(α
a ·N))+

(1− αa) · (W0 + Ka · log2((1− αa) ·N)).
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If we use the fact that log2(a · b) = log2(a) + log2(b), we can conclude that

F a(N, N+) = Ka · log2(N) + αa ·W1 + (1− αa) ·W0+

Ka · (αa · log2(α
a) + (1− αa) · log2(1− αa)).

The fact that this value is supposed to be equal to fa(N) = Ka · log2(N) leads
to the first equation from Proposition 5. the fact that the expression F (N, N+)
attains its minimum when N+ = αa ·N , we differentiate the expression F (N, N+)
with respect to αa and equate its derivative to 0. As a result, we get the second
equation.
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