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Abstract

Traditional statistical and fuzzy approaches to de-
scribing uncertainty are continuous in the sense that we
use a (potentially infinite) set of values from the interval
��� �� to characterize possible degrees of uncertainty. In
reality, experts describe their degree of belief by using
one of the finitely many words from natural language; in
this sense, the actual description of expert uncertainty is
granular.

In this paper, we show that in some reasonable sense,
granularity is the optimal way of describing uncertainty.
A similar mathematical idea explains similar “granular-
ity” in such diverse areas as sleep, consumption, traffic
control, and learning.

1. Introduction

In statistical approach to uncertainty, all values from
[0,1] are needed. In the traditional statistical approach
to uncertainty, the uncertainty of an event E is described
by its probability, which is a number from the interval
��� ��. In many physical situations, this probability grad-
ually (and continuously) changes from 0 to 1.

As a result, due to the known property of continuous
functions, for each number from the interval ��� ��, there
is a moment of time when this particular number repre-
sents a probability of a real-life event. Thus, all numbers
from the interval ��� �� are needed to describe probabilis-
tic uncertainty.

At first glance, it may seem that in fuzzy approach to
uncertainty, also all values from [0,1] are needed. In
fuzzy approach, uncertainty is also described by a num-
ber from the interval ��� �� which describes the degree to
which the expert believes that a certain property holds.

For many reasonable properties (like “small”), as the
value of the corresponding physical quantity increase, the
corresponding degree continuously changes from 1 to 0
(or from 0 to 1). Therefore, similarly to the probabilistic
case, it looks like we need all (infinitely many) numbers
from the interval ��� �� to describe fuzzy uncertainty.

In reality, experts’ description of their uncertainty is
granular. There is a problem with this conclusion. One
of the main goals of fuzzy logic is to formalize expert
knowledge (and its uncertainty). Real-life experts, how-
ever, do not use infinitely many different values to de-
scribe their degree of certainty. They normally use a
small finite number of alternatives: namely, one of the
words describing uncertainty.

Instead of infinitely many possible values from the in-
terval ��� ��, we only get finitely many words; each word
therefore corresponds to a whole set (granule) of possible
values. In other words, the actual description of uncer-
tainty is granular.

From the traditional viewpoint, granularity is a crude
approximation. From the viewpoint of traditional prob-
abilistic or fuzzy approach, this granular description is
a crude approximate description of the continuous un-
certainty. One can expect such an approximate behavior
from a simple crude system which does not have enough
memory or computing power to process too many possi-
ble degrees of certainty.

But is it? However, it is unclear why a human brain, the
result of billions of years of evolution from simple one-
cell organisms to sophisticated thinking abilities, would
use such a low quality crude approximation scheme.

So maybe granularity is not a crude approximation
scheme? Maybe granularity is, vice versa, a high qual-
ity (or even optimal) scheme for describing uncertainty?



What we are planning to do. In this paper, we show that
granularity is, indeed, a high quality (and even optimal)
scheme for describing uncertainty.

In our derivation, we will use the standard techniques
of continuous mathematics, in line with our general re-
sults from [3] showing that continuous mathematics is
a very helpful tool in justifying different techniques for
handling uncertainty.

2. Towards the Formalization of the Problem

Preliminary idea: experts strife to increase the cer-
tainty. How can we formalize this problem? We
want to describe the uncertainty of human knowledge.
This knowledge consists of several different statements
S�� � � � � Sn. We are considering the situation in which the
uncertainty of each statement is characterized by a num-
ber from the interval ��� ��; in other words, the uncertainty
of human knowledge is described by assigning n num-
bers d�� � � � � dn to the statements which form a knowl-
edge base.

Experts do not simply keep the knowledge about their
area of expertise, they also strife to increase the amount of
knowledge, either by extracting new pieces of knowledge
from the experimental data, or by using logical arguments
to extract new knowledge and new statements from the
already known ones.

Since the memorization abilities of each individual ex-
pert are limited, an expert invariable forgets some of the
knowledge that he previously knew. This “forgetting”
is important because it allows us to clear the memory
for new ideas and new results. However, while individ-
ual experts may forget part of the knowledge, from the
viewpoint of the whole community of experts, the total
amount of knowledge (normally) increases.

The final goal of experts as a group is to attain full
knowledge of a certain domain, when we would be able,
given each statement, to decide whether this statement
is true or not. From this viewpoint, the ideal degree of
certainty for each statement is either 0 or 1.

If the degree of certainty is 0, this means that for the
negation of this statement, the degree of certainty is equal
to 0. Thus, without losing generality, we can say that an
expert strives to make his degrees of certainty di as close
to 1 as possible, i.e., as large as possible.

Ramification of the preliminary idea: experts strife to
increase the certainty within limited resources. Each
increase in the degrees of certainty (i.e., each decrease in
uncertainty) requires a certain effort, often, a very sub-
stantial effort. The expert’s resources are usually limited.
So, an optimal behavior for an expert would be: Within
the given total effort, to maximize the resulting certainty.
Let us formalize this requirement.

First step towards formalization: describing effort.
We are trying to formalize the fact that experts have a
limited number of resources and that, therefore, they can
only use a limited amount of effort.

The effort e�E� d� which is necessary to achieve a
given level of certainty d for a given statement E depends
both on the level d and on the statement E:

� the larger required degree of certainty, the more ef-
forts are needed, so e�E� d� is an increasing function
of the degree d;

� also, for some statements, their checking requires
much more time and effort than for the others, so
the necessary amount of effort e�E� d� depends not
only on the degree d, but also on the statement E.

This function describes what effort is necessary for a
single statement. If two statements E� and E� are com-
pletely unrelated, then clarifying one of them does not
in any way help us to clarify the second one. Thus,
for unrelated statements, if we want to achieve the de-
gree of certainty d� for the first statement and the de-
gree of certainty d� for the second statement, then the
required effort can be simply computed as a sum of the
efforts corresponding to these individual statement, i.e.,
as e�E�� d�� � e�E�� d��.

In real life, statements are rarely unrelated.

� Sometimes, the statements are logically related; e.g.,
E� implies E�. In this case, if we increase the de-
gree of certainty d� in the statement E�, we au-
tomatically increase the degree of certainty in the
statement E�. Therefore, the effort used to in-
crease the degree of certainty in E� helps in in-
creasing the degree of certainty in E�. As a result,
the amount of efforts required to achieve both the
degrees d� and d� is (when d� � d�) practically
equal to the effort e�E�� d�� necessary to achieve
the degree d� and thus, much smaller than the sum
e�E�� d�� � e�E�� d��.

� In some other cases, there is a different (“competi-
tion”) relation between the statements E� and E�:
attempts to confirm the statement E� compete for
the same resources as attempts to confirm the state-
ment E�. For example, if we are interested in the
effect of a certain medicine on a rare disease, then
we can test this medicine on patients; we can use
the same (small) population of patients to test the
second medicine. However, if we want to test both
medicines, we cannot simply combine these two
testings because we do not have enough patients for
that. Therefore, if we want to test both medicines,
we need to use a lot of additional efforts, e.g., test
the medicines on animals, computer models, etc. In



this case, the total effort required to achieve both de-
grees of certainty is much larger than simply the sum
of the efforts e�E�� d�� � e�E�� d��.

In some cases, the total effort is smaller than the sum; in
some other cases, the total effort is much larger than the
sum. It is reasonable to assume that for a large number
of statements which may be related in different ways, on
average, these positive and negative deviations from the
sum more or less compensate each other. In the result-
ing approximation, the total effort of achieving certainty
degree d� for statement E�, certainty degree d� on state-
ment E�, . . . , and certainty degree dn on a statement En

can be described as the sum of the corresponding individ-
ual efforts, i.e., as e�E�� d�� � � � �� e�En� dn�.

We are interested in large bodies of knowledge, which
contain many different statements Ei.

� Some of these statements are easier to analyze and
require fewer effort to attain the given degree of cer-
tainty d.

� Some of these statements are more difficult to ana-
lyze and require more effort to attain the given de-
gree of certainty d.

For a large body of knowledge, which contains both easy-
to-analyze and difficult-to-analyze statement, it is rea-
sonable, as a first approximation to the sum e�E�� d�� �
� � �� e�En� dn�, to replace individual dependencies d�
e�E� d� with a single “average” dependence e�d� – i.e.,
by an effort e�d� required to achieve a level of cer-
tainty d for an “average” statement. In other words, as
a first approximation to the desired sum, we take the sum
e�d�� � � � �� e�dn�.

When we replace e�Ei� di� by e�di�, then:

� for easy-to-analyze statements, for which the actual
effort e�Ei� d� is smaller than average, this replace-
ment overestimates the effort;

� for difficult-to-analyze statements, for which the ac-
tual effort e�Ei� d� is larger than average, this re-
placement overestimates the effort.

It is reasonable to expect that on average, these posi-
tive and negative corrections to the sum formula more or
less compensate each other. Therefore, as a reasonable
first approximation to the total effect needed to achieve
the levels of certainty d�� � � � � dn, we can take the sum
e�d�� � � � �� e�dn� � E.

Second step towards formalization: describing satis-
faction. Similarly, the amount of satisfaction s�E� d�
resulting from achieving the degree of certainty d for a
statement E, depends both on the statement E and on the
degree d.

This function describes what satisfaction we get from
a single statement. If two statements E� and E� are
completely unrelated, then the resulting satisfaction can
be simply computed as a sum of the satisfaction lev-
els corresponding to these individual statement, i.e., as
s�E�� d�� � s�E�� d��.

In real life, as we have mentioned, statements are
rarely unrelated.

� Sometimes, the statements are logically related; e.g.,
E� impliesE�. In this case, if we increase the degree
of certainty d� in the statementE�, we automatically
increase the degree of certainty in the statement E�.
Therefore, the satisfaction that we get from achiev-
ing both the degrees d� and d� is (when d� � d�)
practically equal to the satisfaction s�E�� d�� of
achieving the degree d� for the first statement, and
thus, smaller than the sum s�E�� d�� � s�E�� d��.

� In some other cases, there is a synergy between the
statements E� andE�. For example, these statement
may cover two possible cases of some general inter-
esting statement, and thus, the satisfaction of con-
firming both statement Ei with certain degrees of
certainty means that we have covered the general
statement as well. As a result, in this case, the total
amount of satisfaction obtained from achieving both
degrees of certainty is much larger than simply the
sum of the satisfaction values s�E�� d���s�E�� d��.

In some cases, the total satisfaction is smaller than the
sum; in some other cases, the total satisfaction is much
larger than the sum. It is reasonable to assume that for
a large number of statements which may be related in
different ways, on average, these positive and negative
deviations from the sum more or less compensate each
other. In the resulting approximation, the total satisfac-
tion of achieving certainty degree d� for statement E�,
certainty degree d� on statement E�, . . . , and certainty
degree dn on a statement En can be described as the sum
of the corresponding individual satisfaction levels, i.e., as
s�E�� d�� � � � �� s�En� dn�.

We are interested in large bodies of knowledge, which
contain many different statements Ei.

� Some of these statements are more relevant and in-
teresting, and therefore their confirmation brings in
more satisfaction.

� Some of these statements are more technical, less
relevant and less interesting, and therefore their con-
firmation brings in less satisfaction.

For a large body of knowledge, which contains both more
interesting and less interesting statements, it is reason-
able, as a first approximation to the sum s�E�� d�� �



� � �� s�En� dn�, to replace individual dependencies d�
s�E� d� with a single “average” dependence s�d� – i.e.,
by a satisfaction s�d� coming from achieving a level of
certainty d for an “average” statement. In other words, as
a first approximation to the desired sum, we take the sum
s�d�� � � � �� s�dn�.

When we replace s�Ei� di� by s�di�, then:

� for more interesting statements, for which the actual
satisfaction level s�Ei� d� is larger than average, this
replacement underestimates the satisfaction level;

� for less interesting statements, for which the actual
satisfaction level s�Ei� d� is smaller than average,
this replacement overestimates the satisfaction level.

It is reasonable to expect that on average, these positive
and negative corrections to the sum formula more or less
compensate each other. Therefore, as a reasonable first
approximation to the total satisfaction corresponding to
the levels of certainty d�� � � � � dn, we can take the sum
s�d�� � � � �� s�dn�.

Final formalization. In this formalization, in order to
find the optimal choice of degrees of certainty d�� � � � � dn,
we must solve the following conditional (constrained) op-
timization problem:

s�d�� � � � �� s�dn�� max ���

under the condition (constraint)

e�d�� � � � �� e�dn� � E� �	�

3. Solution of the Formalized Problem Ex-
plains Granularity

Analytical solution to the above problem. The above
conditional optimization problem can be easily solved by
using the standard calculus technique of Lagrange mul-
tipliers, according to which the above conditional opti-
mization problem can be reduced to an unconditional one

s�d���� � ��s�dn��C ��e�d���� � ��e�dn��E�� max�

where C is a constant (Lagrange multiplier).
For this unconditional optimization problem, the max-

imum can be computed by simply differentiating the ob-
jective function with respect to di and equating the result-
ing partial derivative to 0. As a result, we get the follow-
ing equation: s��di� � C � e��di� � �. So, all the degrees
di corresponding to the optimal degrees selection must
be the solutions to the equation F �d� � �, where we de-
noted F �d� � C � s��d��e��d�. In other words, all these
degrees must be the roots of a function F �d�.

This analytical solution explains granularity. Intu-
itively, small changes in the certainty degree d should

not drastically affect neither the average effort e�d� re-
quired to achieve this degree, nor the average satisfaction
s�d� resulting from achieving this degree. Therefore, it
is reasonable to assume that the functions e�d� and s�d�
are smooth and probably even analytical (i.e., can be ex-
panded in Taylor series). In this case, the function F �d�
is also an analytical function defined on the interval ��� ��.
It is known that an anlytical function which is not identi-
cally 0 can only have finitely many roots on an interval.
Thus, all the optimal degrees of certainty di must belong
to the finite set of these solutions.

For usual analytical functions, this set of solutions is
small. Indeed, an arbitrary analytical function, by defi-
nition, is equal to its Taylor series and therefore, can be
approximated, with an arbitrary accuracy, by a polyno-
mial. A polynomial of degree n can have no more than n
roots; so, e.g., if a cubic polynomial is a reasonable ap-
proximation for the function F �d�, then, in this approx-
imation, the function F �d� has no more than 3 roots, so
we use no more than three different levels of certainty. A
more accurate approximation, e.g., by a 7-th order poly-
nomial (which is usually enough to visually coincide for
most known analytical functions on ��� �� such as sin, cos,
etc.), would reveal no more than 7 different degrees of
certainty, etc.

In other words, no matter how many statement we con-
sider, for each of these statements, the optimal degree of
certainty di should belong to the same (small) set. Thus,
even if we start with the degrees which can, in princi-
ple, take arbitrary values from the interval ��� ��, we end
up showing that in the optimal assignment, only a few of
these values will be actually used.

Hence, granularity is indeed optimal.

4. Similar Ideas Can Be Applied to Sleep,
Consumption, Traffic Control, Learning

Application to sleep. We can apply similar ideas to the
description of other biological processes. For example,
every biological creature has a certain level of activity.
It cannot maintain the highest possible level of activity
all the time, because its resources are limited. There-
fore, it must distribute these resources in such a way that
the overall efficiency is the largest. Let d�� � � � � dn de-
note levels of activity at different consequent moments of
time. Let s�d� denote the productivity of the activity with
level d, and let e�d� denote the effort needed to maintain
this activity level.

Then, the optimal levels of activity can be determined
by solving the optimization problem (1), (2). We already
know, from the solution to this problem, that in the op-
timal solution, the levels di cannot take arbitrary values,
they should all belong to a small set of values. There-
fore, the optimal activity schedule consists not of slowly



changing activity from one level to another, but of switch-
ing between several discrete levels of activity.

This conclusion explains why, instead of a slow tran-
sition between high and low activity, most living creature
have an abrupt transition between activity and sleep.

If we take subtler details into consideration, then we
can say that the above conclusion explains why living
creatures have an abrupt transition between activity and
several levels of sleep such as a REM phase and a normal
sleep.

Similarity with “bang-bang” control in control theory.
The above conclusion is consistent with the fact that in
control theory, the optimal control often involves abrupt
changes from one regime to another. For example, when
driving a car, stability means, in particular, that once the
car swerved, it should return to the original trajectory.
The faster it returns, the more stable is the system. There-
fore, from the viewpoint of stability only, the ideal (opti-
mal) control would be the one that brings the car back on
track in the shortest possible time (i.e., with the largest
possible acceleration).

The non-smoothness of the optimal control is not a pe-
culiar feature of the car example: in control theory, there
are general theorems that show that under certain (reason-
ably general) conditions, the optimal control is indeed of
the above-described “bang-bang” type (see, e.g., [2]; not
incidentally, the word “bang-bang” is an “official”, well-
defined and widely used term in control theory).

Application to consumption. Similarly, for a person
with limited resources, the consumption schedule which
leads to the largest satisfaction is not the schedule in
which these resources are equally distributed, but rather
the schedule in which periods of higher consumption
(“feasts”) are abruptly changing to periods of lower con-
sumptions (“fasts”). This conclusion is in good accor-
dance with the results obtained by economists who an-
alyzed more complicated economic models (see, e.g.,
[1, 4]).

Application to traffic control. In traffic, similar idea
explains why the optimal traffic arrangement means that
we fix a small number of speed levels, and assign (maybe
dynamically) each road to one of these levels. In real life,
such levels are freeway, city limits, school zone, etc.

Application to learning. In learning, the optimal dis-
tribution in learning activity is not a steadfast study, but
rather periods of intense study separated by periods of
relative rest.

Similarly, if we analyze the distribution of learning ac-
tivity in the population, so that di described the amount of
effort used to educate i-th person, we come to the conclu-
sion that the optimal arrangement is not when the teach-
ing efforts are uniformly distributed among students or
when there is a continuous change from one student to

another, but rather when there are a few levels and each
student is assigned to a certain level of studying.

This result is in good accordance with the discrete sys-
tem of university education, where the possible levels of
education in a given domain are described in terms of a
small list of degrees (e.g., BSc, MSc, Ph.D.).

5. Possible Future Work

So far, all we got was a justification of granularity as a
high-quality approach to the description of uncertainty.
However, since we know where this granularity comes
from, for new problems, we can not only justify granular-
ity, but we can also find the optimal level of granularity.
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