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Abstract. For a normal distribution, the probability density p(z) is everywhere
positive, so in principle, all real numbers are possible. In reality, the probability
that a random variable is far away from the mean is so small that this possibility
can be often safely ignored. Usually, a small real number k is picked (e.g., 2 or
3); then, with a probability Py(k) ~ 1 (depending on k), the normally distributed
random variable with mean a and standard deviation o belongs to the interval
a=[a—k-o,a+k-o]

The actual error distribution may be non-Gaussian; hence, the probability P (k)
that a random variable belongs to a differs from Py(k). It is desirable to select k
for which the dependence of Py(k) on the distribution is the smallest possible.
Empirically, this dependence is the smallest for k € [1.5,2.5]. In this paper, we give
a theoretical explanation for this empirical result.

1 Formulation of the Problem

For many measuring instruments, the measurement error is normally dis-
tributed; see, e.g., [10,11]. This known empirical fact has a good theoretical
explanation (see, e.g., [2—4,13]; see also [14] pp. 2.17, 6.5, 9.8, and references
therein): Usually, the manufacturers of the measuring instruments have made
their best effort to eliminate the major sources of measurement error. The
resulting measurement error comes from a variety of small independent er-
ror sources, and thus, can be described as a sum of a large number of small
independent random variables. According to the central limit theorem, such
a sum, under reasonable conditions, converges to normal distribution. Thus,
if there are sufficiently many small random components, the resulting error
distribution is indeed close to normal.

For a normal distribution, the probability density p(z) is positive for
all z, so in principle, all real numbers are possible. In reality, however, the
probability of a random variable to be far away from the mean is so small
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that in many practical applications, this possibility can be safely ignored.
So, the values of a normally distributed random variable are located, with a
reasonably high probability, within a finite interval. To implement this idea,
in practice, usually, a small real number £ is picked (typically, k = 2 or k = 3).
Then, with a probability Py(k) ~ 1 (depending on k), the values of a normally
distributed random variable with mean a and standard deviation o belong
to the interval [a — k- 0,a + k - o]. For a normal distribution, this probability
does not depend on a and o, only on k. For k = 2, we have Py(k) ~ 0.95; for
k = 3, we have Py(k) ~ 0.999; for k = 6, we have Py(k) =~ 1 —107°, etc.

For a normal distribution, we can pick an arbitrary k£ and get the interval
which contains all the values with the corresponding probability Po(k). In
many real-life situations, however, the actual error distribution is close to
Gaussian but not exactly normal [10,11]. The deviation from a Gaussian
distribution can be characterized by one or several parameters € (so that
Gaussian distribution corresponds to e = 0). For a non-Gaussian distribution
characterized by a parameter €, the probability P(k, ) that a random variable
belongs to the interval a = [a—k-0, a+k-0] is, in general, different from Py (k).
It is therefore desirable to select k for which the dependence of P(k,¢) on € is
the smallest possible, i.e., for which we can guarantee that P(n € a) ~ Py(k)
irrespective of whether 1 is normally distributed or not.

The empirical analysis of actual probability distributions of different mea-
suring instruments show that the smallest possible dependence occurs when
k is between 1.5 and 2.5 [10]. This empirical fact is an important part of
measurement practice, but until now, it has not been theoretically explained
— not because we get a difficult-to-solve precisely formulated statistical prob-
lem, but because, due to uncertainty, this informal problem is very difficult
to formalize in precise terms.

In this paper, we show how this problem can be formalized, and we show
that this formalization indeed justifies the empirical choice of k € [1.5,2.5].

2 Selecting a Class of Non-Gaussian Probability
Distributions

2.1 Selecting Distributions Can Be Reduced to Selecting
Functions

In principle, there can be many different probability distributions which are
close to Gaussian. For different possible deviations from the Gaussian distri-
bution, different values of k£ may be the least sensitive to the corresponding
deviations. Therefore, before we start looking for the optimal value of k, we
must first select a reasonable class of such deviations.

In many practical situations, there is no reason why a positive error value
x should be more probable or less probable than the corresponding nega-
tive value —x, so we can assume that these probabilities coincide, and the
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probability distribution is symmetric w.r.t. z — —z (i.e., the corresponding
probability density function p(x) is even).

In particular, we will consider symmetric Gaussian distributions, i.e.,
Gaussian distributions with zero mean. It is known that an arbitrary distri-
bution of this type, with an arbitrary standard deviation o, can be obtained
from a “standard” Gaussian distribution (with zero mean and unit standard
deviation) by a linear transformation f(z) = o - 2. In other words, if ( is
a random variable which is distributed according to the standard Gaussian
distribution, then the variable n = f({) = o - ( is distributed according to
the Gaussian law with zero mean and standard deviation o.

One can show that non-Gaussian distributions can be obtained in a sim-
ilar manner, but with possibly non-linear increasing functions f(z). Indeed,
an arbitrary probability distribution can be described by its cumulative dis-
tribution function (cdf) F(z) = P(n < z). Let Fy(xz) = P({ < z) denote
a cdf which corresponds to the Gaussian distribution. Let us show that by
choosing an appropriate function f(z), we can make n = f({) have the de-
sired cdf F(z). Indeed, since we are only considering increasing functions
f(2), the inequality f(¢) < z is equivalent to ( < f~!(z), where f~!(z) is
the function which is inverse to f(z) (i.e., f~!(z) = z if and only if f(2) = z).
Thus, to guarantee that P(f({) < z) = F(z) for all z, we must guarantee
that P(¢ < f~(z)) = F(z). Since ¢ is distributed according to the stan-
dard Gaussian distribution, we have P(¢ < f~'(z)) = Fo(f~'(z)). Thus,
we must guarantee that for every x, we have F(x) = Fo(f~!(z)). If we de-
note z = f~!(z), then we have z = f(z), and the desired equality takes
the form F(f(z)) = Fy(z), hence we can take f(z) = F~1(Fy(2)). So, every
distribution can indeed be described as n = f(¢) for an appropriate function
£(2).

Since we only consider symmetric distribution, these increasing functions
f(2) have to be odd: f(—z) = —f(2). Hence, f(0) =0, f(z) > 0 for z > 0,
and to reconstruct the entire function f(z), it is sufficient to know its values
for z > 0.

In view of this representation of a arbitrary probability distribution by
a transformation function f(z), instead of selecting a class of probability
distributions, we can select a class of functions f(z). Then, we will be able to
use, as new random variables, combinations = f((), where ¢ has a standard
Gaussian distribution and f(z) is one of the selected functions.

The question is: How to select the “best” (most appropriate) functions

f(2)7

2.2 Best In What Sense?

What do we mean by “the best”? It is not so difficult to come up with
different criteria for choosing a functions f(z):
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e We may want to choose the function f(z) for which the average distance
D(f) between the resulting probability distribution and the actual em-
pirical distributions of measuring instruments is the smallest possible.

e We may also want to choose the function f(z) for which the average
computation time C(f) of some statistical processing algorithms is the
smallest (average in the same of some reasonable probability distribution
on the set of all problems).

At first glance, the situation seems hopeless: it is difficult to feasibly estimate
these numerical criteria even for a single function f(z), so it may look like
we therefore cannot undertake an even more ambitious task of finding the
optimal function f(z). Hopefully, the situation is not as hopeless as it may
seem, because there is a symmetry-based formalism (actively used in the
foundations of fuzzy, neural, genetic computations, see, e.g., [8]) which will
enable us to find the optimal function f(z).

2.3 We Must Choose a Family of Functions

If we simply replace the original measurement unit by a new unit which is
C' times smaller, then all the numerical values of the measurement error n
get multiplied by C. Thus, if the function f(z) (which describes the original
probability distribution) is a reasonable transformation function, then the
function C'- f(z) which corresponds to the same distribution expressed in the
new units is also reasonable. Thus, with every function f(z), all the functions
C - f(z) should be selected as well, the whole family of functions {C - f(z)}
(characterized by a parameter C' > 0) must be selected.

Thus, instead of selecting the “best” (more appropriate) functions, we
should talk about selecting the best families.

In the following text, we will denote families of functions by caligraphic
capital letters, such as F, F;, G, etc.

2.4 An Optimality Criterion Can Be Non-Numeric

Traditionally, optimality criteria are numerical, i.e., to every family F, we
assign some value J(F) expressing its quality, and choose a family for which
this value is minimal (i.e., when J(F) < J(G) for every other alternative
G). However, it is not necessary to restrict ourselves to such numeric criteria
only.

For example, if we have several different families F that have the same
average distance D(F), we can choose between them the one that has the
minimal computational time C'(F). In this case, the actual criterion that we
use to compare two families is not numeric, but more complicated: A family
Fi is better than the family F5 if and only if either D(F;) < D(F3), or
D(F,) = D(F) and C(F;) < C(Fo).

The only thing that a criterion must do is to allow us, for every pair of
families (Fi, F2), to make one of the following conclusions:



Why Two Sigma? A Theoretical Justification 5

e the first family is better with respect to this criterion (we’ll denote it by
F1 = Fy,or Fo < .7:1);

e with respect to the given criterion, the second family is better (F» > Fi);

e with respect to this criterion, the two families have the same quality (we’ll
denote it by F; ~ F2);

e this criterion does not allow us to compare the two families.

Of course, it is necessary to demand that these choices be consistent. For
example, if 71 = F» and F» = F3 then F; = F3.

2.5 Optimality Criterion Must Be Final

A natural demand is that this criterion must choose a unique optimal family
(i.e., a family that is better with respect to this criterion than any other
family). The reason for this demand is very simple.

If a criterion does mot choose any family at all, then it is of no use.

If several different families are the best according to this criterion, then
we still have the problem of choosing the best among them. Therefore we
need some additional criterion for that choice, like in the above example:
If several families Fi,F»,... turn out to have the same average distance
(D(F1) = D(F2) = ...), we can choose among them a family with minimal
computation time (C(F;) — min).

So what we actually do in this case is abandon that criterion for which
there were several “best” families, and consider a new “composite” criterion
instead: F is better than F» according to this new criterion if either it was
better according to the old criterion, or they had the same quality according
to the old criterion and F; is better than F» according to the additional
criterion.

In other words, if a criterion does not allow us to choose a unique best
family, it means that this criterion is not final, we’ll have to modify it until
we come to a final criterion that will have that property.

2.6 The Criterion Must Not Change If We Change the
Measuring Unit Corresponding to the Original Gaussian
Distribution

The exact mathematical form of a function f(z) depends on the exact choice
of units for measuring the original normally distributed variable (. If we
replace this unit by a new unit that is A times larger, then the same phys-
ical value that was previously described by a numerical value ¢ will now be
described, in the new units, by a new numerical value ¢ = (/.

How will the expression for f(z) change if we use the new units? In terms
of E , we have ( = \- Z Thus, the variable n which was originally represented

by a function f(¢), will be described, in the new units, as f ()\ . C), ie., as
7 (C), where f(z) = f(1-2).
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There is no reason why one choice of a unit should be preferable to an-
other. Therefore, it is reasonable to assume that the relative quality of dif-
ferent families should not change if we simply change the units, i.e., if the
family F is better than a family G, then the transformed family 7 should
also be better than the family G.

We are now ready for the formal definitions.

2.7 Definitions and the Main Result

Definition 1. Let f(z) be a differentiable strictly increasing function from
real numbers to non-negative real numbers. By a family that corresponds
to this function f(z), we mean a family of all functions of the type f(z) =
C' f(z), where C > 0 is an arbitrary positive real number. (Two families are

considered equal if they coincide, i.e., consist of the same functions.)
In the following text, we will denote the set of all possible families by &.

Definition 2. By an optimality criterion, we mean a consistent pair
(<, ~) of relations on the set ¢ of all alternatives which satisfies the following
conditions, for every F,G,H € &:

if F < Gand G <H then F < H;
F ~F;

if F ~ G then G ~ F;

if F~Gand G~ H then F ~ H;
if F<Gand G ~H then F < H;
if F~Gand G <H then F < H;
if F <G then G A F and F # G.

NSOt W=

Comment. The intended meaning of these relations is as follows:

e F < G means that with respect to a given criterion, G is better than F;
e F ~ G means that with respect to a given criterion, F and G are of the
same quality.

Under this interpretation, conditions 1.-7. have simple intuitive meaning; e.g.,
the condition 1. means that if G is better than F, and # is better than G,
then # is better than F.

Definition 3.

e We say that an alternative F is optimal (or best) with respect to a criterion
(=, ~) if for every other alternative G either F = G or F ~ G.

e We say that a criterion is final if there exists an optimal alternative, and
this optimal alternative is unique.
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Definition 4. Let X\ > 0 be a positive real number.

e By a \-rescaling of a function f(x) we mean a function f(x) = f(\- z).
e By a A-rescaling R\(F) of a family of functions F we mean the family
consisting of \-rescalings of all functions from F.

Definition 5. We say that an optimality criterion on ¢ is unit-invariant if
for every two families F and G and for every number A > 0, the following
two conditions are true:

i) if F is better than G in the sense of this criterion (i.e., F = G), then
Ry(F) = Ra(9);

ii) if F is equivalent to G in the sense of this criterion (i.e., F ~ G), then
Ry (F) ~ RA(G).

Theorem 1. If a family F is optimal in the sense of some optimality criterion
that is final and unit-invariant, then every function f(z) from this family F
has the form C - z% for some real numbers C and .

Comment. For the convenience of the readers, all the proofs are placed in the
last section.

Since f(z) is an odd function, we can therefore conclude that the corre-
sponding random variable n can be described as n = sign(¢) - |(|*, where ¢
is a standard Gaussian random variable, i.e., a normally distributed random
variable with zero mean and unit standard deviation. This is indeed a good
description for empirical distributions of measurement error [10].

Gaussian variables correspond to @ = 1; so, since we are interested in
distributions which are close to Gaussian, we should consider « close to 1,
i.e., « = 1 + ¢ for some small e.

3 Selecting the Optimal Value of k

Let us consider the class of probability distributions described in the previous
section. We want to find &k for which the dependence of P(k,e) on € is the
smallest. Since empirical distributions are close to normal, we have ¢ = 0. For
€ = 0, we can neglect quadratic and higher order terms in the dependence of
P(k,e) on g, and conclude that P(k,e) ~ Py(k) + € - P(k), where

_ OP(k,¢)

Pi(k) e |e=0

(1)
Thus, this dependence is the smallest if and only if the absolute value |P; (k)]
of the coefficient P; (k) is the smallest possible. It turns out |P; (k)| achieves
its smallest value |P; (k)| = 0 for some k which is indeed close to the interval
[1.5,2.5], thus justifying the above empirical fact:
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Definition 6. We say that the value k is the least sensitive to the possible
non-Gaussian character of the probability distribution if for this k, the ex-
pression |Py(k)|, where Py (k) is determined by the formula (1), attains the
smallest possible value.

The formulation of the result uses the Euler constant

1 1
v = lim <1+§+...+E—ln(n)> ~ 0.577.

n—o0

Theorem 2. The value k = ﬁ ~ 1.44 is the least sensitive to the
e

possible non-Gaussian character of the probability distribution, and for this
k, we have |Py (k)| = 0.

Comment. For this value k, Py(k) ~ 0.85, so at least 85% of the values of
the random variable lie in the interval [a — k - 0,a + k - o]. This value is in
good accordance with common sense, namely, with the 20-80 “Pareto” law,
according to which:

e 20% of the people drink 80% of the beer,
e 20% of the researchers write 80% of all papers etc.

This number is also in good accordance with the experimental fact that from
each 25 rules typically discovered by a data mining system, approximately
20 (i.e., about 80%) are already known (see, e.g., [7]). It is probably worth
mentioning that in [12], we give an alternative explanation of this same fact
— by using fuzzy logic techniques (see, e.g., [6,9]) instead of probabilities.

4 Proofs

4.1 Proof of Theorem 1

This proof is based on the following lemma:

Lemma. If an optimality criterion is final and unit-invariant, then the opti-
mal family Fopy is also unit-invariant, i.e., Rx(Fopt) = Fopt for every num-
ber A.

Proof of the Lemma. Since the optimality criterion is final, there exists
a unique family Fop¢ that is optimal with respect to this criterion, i.e., for
every other F, either Fope > F, or Fopy ~ F.

To prove that Fopy = R (Fopt), we will first show that the re-scaled family
Ry (Fopt) is also optimal, i.e., that for every family F: either Ry (Fopt) > F,
or Ry(Fopt) ~ F.

If we prove this optimality, then the desired equality will follow from the
fact that our optimality criterion is final and therefore, there is only one
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optimal family (so, since the families Fopy and Ry (Fopt) are both optimal,
they must be the same family).

Let us show that Ry (Fopt) is indeed optimal. How can we, e.g., prove that
Rx(Fopt) = F7 Since the optimality criterion is unit-invariant, the desired
relation is equivalent to Fopt = Ry-1(F). Similarly, the relation Rx(Fopt) ~
F is equivalent to Fopy ~ Ry-1(F).

These two equivalences allow us to complete the proof of the lemma.
Indeed, since Fopy is optimal, we have one of the two possibilities: either
Fopt = Ra-1(F), or Fopt ~ Ry—1(F). In the first case, we have Ry (Fopt) > F;
in the second case, we have Ry (Fopt) ~ F.

Thus, whatever family F we take, we always have either Ry (Fopt) > F,
or Ry (Fopt) ~ F. Hence, Ry(Fopt) is indeed optimal and thence, Ry (Fopt) =
Fopt- The lemma is proven.

Let us now prove the theorem. Since the criterion is final, there exists an
optimal family Fope = {C - f(2)}. Due to the lemma, the optimal family is
unit-invariant.

From unit-invariance, it follows that for every A, there exists a real number
A(X) for which f(A-z) = A(N)- f(z). Since the function f(z) is differentiable,
we can conclude that the ratio A(X) = f(A\-z)/f(z) is differentiable as well.
Thus, we can differentiate both sides of the above equation with respect to A,
and substitute A = 1. As a result, we get the following differential equation
for the unknown function f(z):

b
dz

where by a, we denoted the value of the derivative dA/d\ taken at A = 1.
Moving terms dz and z to the right-hand side and all the term containing f
to the left-hand side, we conclude that

g, d

e
Integrating both sides of this equation, we conclude that In(f) = a-In(z) +C
for some constant C, and therefore, that f(z) = const - 2%. The theorem is
proven.

Ck'f,

4.2 Proof of Theorem 2

As we have shown in Section 2, for each ¢, the corresponding random variable
n can be described as n = sign(¢) - [¢|'T¢, where ( is a standard Gaussian
random variable, i.e., a normally distributed random variable with zero mean
and unit standard deviation. For this random variable, the mean is equal to
E.(n) = 0. Let o(e) = \/E-(n?) denote its standard deviation. Then, the
probability P(k,¢) is equal to the probability that n € [~k - o(e), k - o(€)],
i.e., to the probability that |n| < k- o(e).



10 Hung T. Nguyen et al.

Since |n| = |¢|**, the probability P(k,e) is equal to the probability that
IC|**® < k- o(e), i.e., that for a standard Gaussian random variable ¢, we
have |¢| < B(e), where we denoted B(e) = (k - o(¢))*/(1*+) In other words,
P(k,e) = Fert(B(g)), where we denoted

Fucle) = = e (-5) o @)

Due to the chain rule, P, (k) = F'(B(0)) - B'(0), where F_, and B’ denote
derivatives with respect to . The function Fy¢(z) is a strictly increasing
function of z, with F}.(z) > 0 for all z. Hence, P;(k) = 0 if and only if
B'(0) =0.

By definition, B(e) = (k- (e))"/(1+9) = exp(b(e)), where we denoted

In(k) + In(o(g)) -

be) = 1+e¢

(3)

Therefore, B'(e) = exp(b(e)) - b'(¢). The first factor in this product is always
positive, so B'(0) = 0 if and only if 4'(0) = 0. Let use the equation b'(0) =0
to determine the desired value k. Differentiating the above expression for b(e)
and substituting € = 0, we conclude that (In(o(e))' —In(k)—In(o(e)) =0, i.e.,
0'(0)/o(0) — In(k) — In(c(0)) = 0. For £ = 0, we have a standard Gaussian
distribution, for which ¢(0) = 1. Thus, the above equation takes the form
0'(0) —In(k) = 0, hence In(k) = ¢'(0) and

k= exp(o’ (0)). (4)

To complete our proof, let us find the explicit expression for ¢'(0). By defi-
nition,

70 = B = BollcP) = o=+ [ e (<5 ) a0

Since negative and positive values ¢ lead to an equal contribution to this
integral, we can conclude that

00 2
o)== [ e (-5 ) dc=

2 e R ¢?
Vo [T e (<) ac ©)

To simplify this integral, we introduce a new variable z = (2/2; then ¢ =
21/2 . 21/2 d¢ = (v/2/2) - 21/? - dz, and hence,

21+E

o*(e) = NG

/ 212t L exp(—2) dz. (7)
0
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By definition of a gamma function

I'(n) :/ 2" e dz (8)
0
(see, e.g., [1], p. 350; [5], Appendix A, Table 17), we thus have
1 3
)= =2 .= .
o°(e) N <2 + 5) 9)

For ¢ = 0, we have ¢(0) = 1 and I'(3/2) = /7/2 (see [1]), so this equality
clearly holds.

Differentiating both sides of the equality (9) with respect to e, we conclude
that

20() - o'(e) = % : (21+8 ‘In(2)- T (; +s> + 2t (; +s>> . (10)

™

Substituting ¢ = 0, taking into consideration that I'(3/2) = /7/2, and
dividing both sides of the resulting equality by 2, we conclude that

n(2) I"(3/2)
> T

To compute I"(3/2), we can use the following known equality (see, e.g., [5]):

o'(0) =

(11)

I'(z)-r (z + %) = (2m)Y/? . 21272 P(22); (12)
hence,
1\ @22
F<z+§>— 70 2-/m-27%, (13)
In particular, for z = 1 + ¢, we get
3 _I'(24+2) 1 __,.
F<2+6>— Ti+e) 2 27 (14)

One of the main properties of a gamma function is that I'(n + 1) = n - I'(n);
hence I'(2 + 2¢) = (1 + 2¢) - I'(1 + 2¢), and the equation (13) takes the form:

3\ T(142) (14+2) V7 .o,
F<§+5>_ T1+e) I

(15)

It is known [1] that (1) is equal to —v, where v is the Euler’s constant.
Thus, for small e, I'(1+¢) =1—v-e+o0(e), ['(14+2c) =1—2y -+ o(e),
and 27% = ¢=2¢"(2) =1 — 2In(2) - £ + o(¢). Hence, the equation (15) takes
the form:
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r(3ee) - e e -

(1+8-(2—'y—21n(2))-g-{—o(s). (16)
Thus,

r <g> - @-(2—7—2111(2)) =T (1—%—111(2)). (17)

Substituting (17) into (11), we conclude that

iy g Y In(2)
a'(0) = —5 T

(18)

From the formula (4), we can now get the desired expression for k. The
theorem is proven.
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