Towards Faster, Smoother,
and More Compact Fuzzy Approximation,
with an Application to Non-Destructive Evaluation
of Space Shuttle’s Structural Integrity

Yeung Yam
Department of Mechanical & Automation Engineering
The Chinese University of Hong Kong
Shatin, NT, Hong Kong, China

yyam@mae.cuhk.edu.hk

Roberto Osegueda and Vladik Kreinovich
Future Aerospace Science and Technology Program (FAST)
Center for Structural Integrity of Aerospace Systems
University of Texas at El Paso
El Paso, TX 79968, USA
{osegueda,vladik } @utep.edu

Abstract

It s known that fuzzy systems are universal approx-
mmators, i.e., any input-output system can be approx-
imated, within any given accuracy, by a system de-
scribed by fuzzy rules. Fuzzy rules work well in many
practical applications. However, in some applications,
the existing fuzzy rule approzimation techniques are not
suffictent:

First, in many practical problems (e.g., in many
control applications), derivatives of the approzimated
function are very important, and so, we want not
only the approrimating function to be close to the ap-
proximated one, but we also want their derivatives to
be close; however, standard fuzzy approximation tech-
niques do not guarantee the accuracy of approrimating
a derivative.

Second, to get the desired approzimation accuracy,
we sometimes need unrealistically many rules.

In this talk, we show how both problems can be
solved.

1. First Problem: In Many Practical Sit-
uations, It Is Desirable to Have a
Smooth Extrapolation

1.1. Extrapolation isimportant

In many practical problems, we know the values of
a function f(x) at several points (1), ... z*) and we
are interested in knowing the values of the function
f(z) for all , i.e., we want to extrapolate the function
f(z). For example:

In measurement, we measure the values of some dis-
tributed characteristic at places where the sensors are
located, and we want to reconstruct the values of this
characteristic at all points.

In control, we may have recorded the control values
F(), ., f(™®)) used by an experienced operator for
different inputs (), ..., #(*) and we want to design
an automated controller f(z) that would apply exactly
these control values for these inputs.

In image processing, we observe the intensity at sev-
eral points, and we would like to reconstruct the entire
image (i.e., the intensity at other points) based on these
known values. This is necessary, e.g., if we want to ro-
tate an image, because the image is normally stored by
its values on a rectangular grid, and when we rotate,

the pixels from the grid no longer coincide with the
grid values, so we need to extrapolate.
There are many successful extrapolation techniques:

e we can use numerical methods like spline (piece-
wise polynomial) extrapolation;

e we can train a neural network on the patterns
() fY), o (B f(@®)), and then use,
for an arbitrary input z, the result f(z) of the
network’s training as the desired output;

e we can use fuzzy extrapolation techniques, namely,
we can form a rule-base with the rules “if = is
close to (1) then f(x) should be close to f(z(9)”
(1 < i< k), and apply the general fuzzy model-
ing methodology to transform these rules into the
precise control strategy (see, e.g., [5]).

1.2. In many practical problems, we want to pre-
serve smoothness

The above extrapolation techniques provide a good
approximation to the actual (unknown) values of the
desired function f(x) in the sense that for every input

z, the extrapolated value f(z) is usually close to the
value of the function f(x). In many practical appli-
cations, however, it is not enough that the wvalues of
the desired functions be approximated precisely; it is
also desirable that the values of its derivatives be re-
produced accurately. For example:

In nondestructive testing of structural integrity, we
send an ultrasonic signal to the tested system, and mea-
sure the resulting vibration at different points. Our
goal is to detect the points where the cracks or other
possible faults are. It is known that faults correspond
to large values of stress, and stress can be evaluated as
a curvature (second derivative-related characteristic)
of the observed vibration amplitude. So, for applica-
tions to nondestructive testing, we need to be able to
approximation second derivatives correctly.

In control applications, we often want control to be
smooth (e.g., in control related to transportation of hu-
man beings or delicate goods; in docking a spaceship
to a space station, etc). Therefore, when we start with
the recorded experience of an expert controller (who
knows how to control it smoothly), and we extrapo-
late the control from the operator-given values f(x(k)),
we not only want the resulting automatic controller to
reproduce the wvalues of the resulting control function
f(z) accurately, we also want this controller to accu-
rately reproduce the derivatives of the expert’s control
function.

In tmage processing, it 1s also often very important
to reproduce smoothness accurately.

For example, one of the important 1mage process-
ing problems is finding text in a pixel-by-pixel image.
This problem is extremely important for security, when
to detect potential threats, it is desirable to look up
millions of webpages to see if any of them contain po-
tentially dangerous words and phrases. It is easy to
use web search tools to detect these words as text,
but new methods are needed to detect these words in
web-placed images. A natural way to detect a text
in an image is to use the fact that a text is a discon-
tinuous (or at least non-smooth) part of the image.
Since an image can contain a text which is neither hor-
izontal nor vertical, a reasonable way to text finding
includes a rotation of the text. Therefore, when we
make a rotation-related extrapolation, we would like to
keep non-smooth parts non-smooth, and smooth parts
smooth (to preserve the ability to detect the given im-
age).

In analyzing satellite photos, there is also a need for
rotations: images of nearby areas are often obtained
from slightly different angles, so we must rotate them
before we can combine (“mosaic”) then into a single
large-area picture. Many useful geophysical features
like faults (or geographical features like roads) repre-
sent non-smoothnesses in an image; therefore, it is im-
portant that the related rotation preserve smoothness.

1.3. Existing techniques do not always preserve
smoothness. a problem

Not all existing extrapolation techniques preserve
smoothness.

For example, the simplest spline extrapolation —
piece-wise linear extrapolation of a function — preserves
its values, and describes the first derivatives of this
function more or less accurately. However, the result-
ing first derivative is piece-wise constant; therefore, the
second derivative of the approximating function con-
sists of 0’s separated by infinite values at z("). As a
result, this extrapolation is useless for nondestructive
testing, where we need second derivatives.

Standard fuzzy extrapolation is based on a very lo-
calized membership function describing “close”; as a
result, we get the same problem with second deriva-
tives.

Since some extrapolation techniques do approximate
derivatives well (e.g., some neural networks), one pos-
sible solution may be to abandon the existing tech-
niques and use only those which preserve derivatives.
However, we may not want to simply abandon these
techniques, because they have many advantage; e.g.,
fuzzy rules have two major advantages:

o first, fuzzy rules (in contrast to, say, PDE’s or neu-
ral networks) are intuitively clear;

e second, fuzzy rule representation is naturally par-
allelizable, which i1s important if we want to save
computation time.

It is due to these advantages that fuzzy rules work well
in many practical applications. So, instead of simply
abandoning these techniques, we would like to modify
the existing techniques so that they will approximate
derivatives as well. In this paper, we describe the nec-
essary modifications.

2. How to Make Approximation Smooth:
Practical Technique

We will describe this technique by presenting cases
of increasing complexity until we get the most general
situation.

2.1. Case 1: function of one variable, first-order
derivativedesired

In this simple case, we know the values f; = f(x)
of an unknown function f(x) at points «(1, ... 2(*);
without losing generality, we can assume that z(!) <
¢® < .. < 2™ Our goal is to provide an extrap-
olation f(x) which would approximate both the values
of the function f(x) and of its derivative f'(z). We
know the desired values f; of the function f(z); we
can also use standard numerical differentiation formu-
las to estimate the values of its derivatives, e.g., as
FeD)y = di = (figr — fio1)/ (20D — 20=D) (This
two-sided symmetric derivative is preferable because
its error 1s much smaller than for a more standard one-
sided asymmetric expression (fi1q — f;)/ (20t — 2();
in border points, we have no other choice but to use a
one-sided formula.)

In other words, the problem is to find a function f(x)
which satisfies k conditions f(2(") ~ f; and k condi-
tions f/(#() &~ d;. A natural way to solve this prob-
lem is to first satisfy half of these conditions, and then
modify the solution to satisfy the other half. We have
already mentioned that if we start by applying one of
the known extrapolation techniques to satisfy the con-
ditions f(x")) & f;, then we may get completely wrong
values of the derivatives. So, the only remaining pos-
sibility is to first extrapolate the derivatives. Thus, on
the first stage of the proposed algorithm, we compute
the values d;, and use the chosen technique to find a
function d(x) for which d(x(i)) =d;.

This function cflv(x) is an approximation to the deriva-
tive f'(x); therefore, we can reconstruct the desired

function f(x) as I(x) + C, where I(z) = fox J(y) dy,
and the integration constant C' can be determined,
e.g., by applying the Least Squares Method to &k con-
ditions f(z)) = I(xD) + C ~ fi: in other words,
C=(1/k)>(f — (D). So, the second stage of the
algorithm consists of computing the integral I(z) (by
numerical integration), finding the value C' from the
above formula, and then computing f(x) =1I(z)+C.

Since numerical differentiation only gives approzi-
mate values of the derivatives d; &2 f’(x(i)), as a result
of this two-stage algorithm, we get a function f(x) for
which f(x(i)) ~ f;. In many practical applications, the
values f; come from measurements and are, therefore,
themselves imprecise; so, it is quite sufficient to have
fe®) ~ fi

In some cases, however, the measurements which
lead to f; are very precise, so we would like to get
the exact equality f(z(")) = f; (or at least to decrease
the approximation error |f(2()) — f;|). In such cases,
since we already know that f(z) = f(x), we repre-
sent the desired function f(z) as f(x) + Ay(z), with
As(a) = F(@9) = Fa®) = f; = F(z)), and repeat
the above two-stage procedure for this new function
Aj(x). As aresult, we get an approximation Aj(z) =
Ay(z), with [Ay(2®) — Ay (2] < |Ay(2®)], and
therefore, a better approximation ﬁ(x) = f(x)—i—&l(x)
for f(z). If we are still not satisfied with the error
level of this approximation, we can form a new dif-
ference As(z) = f(x) — fi(x), and repeat the same
error-decreasing procedure, etc., until the approxima-
tion error is small enough.

2.2. Case 2: function of one variable, higher-order
derivativesdesired

We already know how to approximate a function
f(z) of one variable z together with its first deriva-
tive f'(x). We can use the same idea to approximate
a function together with any number of derivatives.
Indeed, let us show, e.g., how to approximate a func-
tion f(x) and its two derivatives f'(z) and f"(z). By
using numerical differentiation, we get the values dg
of the first derivative f/(z). To these values, we ap-
ply the above two-stage algorithm and get an approx-
imation d(z) for the function f'(z) and for its first
derivative (f')'(x) = f"(x). From this approxima-
tion, we can reconstruct f(z) as ~(x) = I(z) + C,
where I(z) = fox g(y) dy + C, and a constant C' can
be determined similarly to Case 1. The resulting algo-
rithm approximates a function together with the val-
ues of its first two derivatives. (Similarly to Case 1,
if we are not satisfied with the approximation error,

we can repeat the same procedure for the difference
Aj(x) = f(x) — f(x), and take f1(x) = f(z) + A1)
as the next approximation to f(x).)

A similar recursive procedure helps to approximate
a function together with any given number of deriva-
tives. Indeed, suppose that we already have a proce-
dure P; which approximates a function f(z) together
with its s derivatives f/(z), f’(z), ..., and we want to
approximate a function together with its s + 1 deriva-
tives. By using numerical differentiation, we get the
values d; of the first derivative f'(z) of the desired func-
tion. To these values, we apply the algorithm P, and
get an approximation d(x) for the function f'(x) and
for its s first derivatives. From this approximation,
we can reconstruct f(z) as f(z) = I(x) + C, where
I(x) = fox cflv(y) dy 4+ C, where a constant C' can be de-
termined similarly to Case 1. The resulting algorithm
approximates a function together with its first deriva-
tive, and with the first s derivatives of this derivative,
i.e., 1t reconstructs a function together with its s + 1
derivatives.

2.3. General case: function of several variables

In the following text, we follow a convenient notation
(widely used in physics) of denoting a partial derivative
of a function f with respect to a variable z; by f;, and,
correspondingly, a partial derivative with respect to z;
and z; by fs;. A general derivative has the form fp,
where D = 41 ...4; is a sequence of indices (i.e., the
form f1, 1,).

If we want to
function f(xy1,za,...,2y,) of several variables together
with its first derivative f;, then we can apply the same
two-stage procedure as for a function of one variable,
with the only complication that after computing the
numerical values d; of the first derivative and extrap-
olating these values into a function d(z1,%s,...), we
have f(x1,2a,...) = I(x1,22,...) + C(x2,...), where
Iz, 29,...) = foxl d(y, z2,...)dy, and the integration
constant C'(zs,...) may depend on the variables z, ...

reconstruct a

We know that for given inputs z(¥) = (l‘(ll), e x%)),
we must have C(l‘(zi), Cel ng)) ~ f; — I(z); therefore,
to find the function C(zs,...), we need a third stage,
on which we apply the same original extrapolation pro-
cedure to these values to get the function C(z1,...).
If we want to reconstruct a function f(z1,...,2,)
together with several derivatives (e.g., with its two first
derivatives f; and f2), then we first reconstruct the
lowest, derivative from which both f; and f2 can be
obtained by integration (in the above example, f12),
and then find f by several consequent integrations.

2.4. Practical application

As a case study, we applied the new methods to the
problem of non-destructive evaluation of structural in-
tegrity of Space Shuttle’s vertical stabilizer. To prove
the applicability of our method, we applied this tech-
niques to measurement results for pieces with known
fault locations. Our method detected all the faults
in >70% of the cases, much larger proportion than
with any previously known techniques (for details, see

[1, 6,7, 8]).
2.5. Theoretical Justification

It is known that fuzzy systems are universal ap-
proximators, i.e., any input-output system can be ap-
proximated, within any given accuracy, by a system
described by fuzzy rules (see, e.g., a survey [5], pp.
135-195, and references therein). To guarantee that a
smooth approximation i1s always possible, let us prove
that, even if we understand accuracy as closeness of
both the approximation and its derivatives, fuzzy sys-
tems are still universal approximators.

In this result, we follow [9] and consider fuzzy sys-
tems in which “and” is represented by an algebraic
product, aggregation is represented by sum, member-
ship functions for the input are Gaussian, and outputs
are crisp. For such systems, the input-output function
is given by a formula

9@y, . xn) = N(x, ..., 20)/D(x1,. .. 2n), (la)

where

N(wy,.en) =Y wi-pia(21) - fiin(2n), (1b)
i=1

D(xl,...,xn):Zﬂi,1($1)'~~'ﬂi,n(l‘n), (1c)

w; are real numbers, and p; ;(x) are Gaussian func-
tions.

Let s be an integer, let ¢ > 0 be a real numbers.
We say that a function g(x1,...,2,) approzimates a
function f(xy1,...,#,) and its derivatives of order < s
with accuracy ¢ if for all z; € [-A, A],

|f(x1a"'axn)_g(xla"'axn”SEa

and for every derivative D of order < s,

|fyp(l‘1, e

ytn) = gp(r1,.. o) <€

Theorem. Let s and n be integers, let A > 0 and
g > 0 be real numbers, and let f(x1,...,2,) be an s-
times differentiable function on [—A, A]™. Then, there
exists a function g(x1,...,2,) of type (la)—(1c) which
approxzimates f(xq, ..., x,) and its derivatives of order
<'s with accuracy ¢.

The proof of this result is given in [4].

3. Second Problem: It Is Often Desirable
to Have Fewer Fuzzy Rules

Most current applications of fuzzy control deal with
reasonably simple systems, where a small number of
control rules is sufficient; straightforward application
of the same methodology to more complicated systems
leads, sometimes, to unrealistically many rules. This
problem (and methods of handling it) has been de-
scribed, e.g., in [2, 3].

We will show how, for a reasonable class of fuzzy
controllers, we can decrease the number of rules. Let’s
consider a system with inputs xq, z9 and control rules
“Uf Ay i(21) and Ay j(22) then v = u; ;”, where A, ; are
fuzzy properties, and u; ; are given values. We assume
that for £ = 1,2, the corresponding properties A, ; form
a fuzzy partition, i.e., for every x¢,). Agi(xy) = 1. 1If
we use a - b as a t-norm, addition for combining rules,
and center-of-gravity defuzzification, the resulting con-
trol is u(xy, x2) = Zi,j ui - Ari(21) - Ag j(22).

The fewer non-zero coefficients wu; ;, the fewer rules
we need. So, to decrease the number of rules, we rep-
resent the corresponding bilinear form
F= Zi,j Uiy -z as Fo= Zle uy, - Yy - Z,, where
Y, are linear combinations of y;, Z, are linear combi-
nations of z; (Y, =5, cz(ii) Wi, Ly = Z]' cz()? - z;), and
the number P 1s the smallest possible. Then, we can
describe the fuzzy controller as

u(zr, @e) = 3 - Ay (1) - Ab L (22),

where AZ,p(l’Z) =3, C;(fz)' - Ag;(xe) are the correspond-
ing linear combinations. Thus, P rules are sufficient.

If the matrix u; ; is symmetric, then the desired rep-
resentation of the bilinear form corresponds to eigenval-
ues uj, and eigenvectors Y, = Z,; in general, the desired
representation is known as a Singular Value Decompo-
sition (SVD). A similar reduction can be achieved if
we have three or more inputs x;. Practical examples
(see, e.g., [10]) show that this reduction can indeed be
drastic.

Comment. 1t 1s worth mentioning that by formally ap-
plying the SVD techniques, we sometimes end up with
negative (or > 1) values of membership functions 4j .

Acknowledgments

This work was supported in part by NASA un-
der cooperative agreement NCCb5-209, by NSF grants
No. DUE-9750858 and CDA-9522207, by the United
Space Alliance, grant No. NAS 9-20000 (PWO
C0C67713A6), by the Future Aerospace Science and
Technology Program (FAST) Center for Structural In-
tegrity of Aerospace Systems, effort sponsored by the
Air Force Office of Scientific Research, Air Force Ma-
teriel Command, USAF, under grant number F49620-
95-1-0518, by the National Security Agency under
Grant No. MDA904-98-1-0564, and by Hong Kong
RGC Earmarked Grant CUHK519/95E.

References

[1] G. Andre, Comparison of Vibrational Damage Detec-
tion Methods in an Aerospace Vertical Stabilizer Struc-
ture, Master Thesis, The University of Texas at El
Paso, Civil Engineering Department, May 1999.

[2] L. T. Kéczy and D. Tikk, “Approximation in
rule bases”, Proc. IPMU’96, Granada, Spain, 1996,
pp. 489-494.

[3] B. Kosko, “Optimal fuzzy rules cover extrema”, Pro-
ceedings of the World Congress on Neural Networks
WONN’94, 1994.

[4] V. Kreinovich, H. T. Nguyen, and Y. Yam, “Fuzzy
Systems Are Universal Approximators for a Smooth
Function And Its Derivatives”, The Chinese Univer-
sity of Hong Kong, Technical Report CUHK-MAE-99-
002, January 1999.

[5] H. T. Nguyen and M. Sugeno (eds.), Fuzzy Systems:
Modeling and Control, Kluwer, Boston, MA, 1998.

[6] R. A. Osegueda, A. Revilla, L. Pereyra, and
O. Moguel, “Fusion of modal strain energy differ-
ences for localization of damage”, In: A. K. Mal (ed.),
Nondestructive Fvaluation of Aging Aircraft, Airports,
and Aerospace Hardware III, Proceedings of SPIE,
Vol. 3586, Paper 3586-28.

[7] L. R. Pereyra, R. A. Osegueda, C. Carrasco, and
C. Ferregut, “Damage detection in a stiffened plate
using modal strain energy differences”; Ibid, Paper
3586-29.

[8] N. S. Stubbs, T. Broom, and R. A. Osegueda, “Non-
destructive construction error detection in large space
structures”, AIAA ADM Issues of the International
Space Station, ATAA, Willlamsburg, Virginia, April
1998, pp. 47-55.

[9] L.-X. Wang, “Fuzzy Systems Are Universal Approxi-
mators”, Proc. FUZZ’IEFE, San Diego, CA, 1992, pp.
1163-1170.

[10] Y. Yam, “Fuzzy approximation via grid point sam-
pling and SVD”, IEEE Transactions on Systems,
Man, and Cybernetics, 1997, Vol. 27, No. 6, pp. 933—
951.

