
Why Kolmogorov Complexity

in Physical Equations�

Vladik Kreinovich and Luc Longpr�e

Department of Computer Science

University of Texas at El Paso

El Paso� TX ������ USA

emails flongpre�vladikg�cs�utep�edu

Abstract

Several researchers� including M� Gell�Mann� argue that the notion of

Kolmogorov complexity� developed in the algorithmic information theory�

is useful in physics �i�e�� in the description of the physical world�� Their

arguments are rather convincing� but there seems to be a gap between

traditional physical equations and Kolmogorov complexity� namely� it is

not clear how the standard equations of physics can lead to algorithmic

notions underlying Kolmogorov complexity� In this paper� this �gap	

is bridged� we explain how Kolmogorov complexity naturally appear in

physical equation�

� Introduction

��� The notion of Kolmogorov complexity

The notion of complexity �usually informal� is very useful in physics� For ex�

ample� observations that lead to a sequence of all ��s describe a very simple

phenomenon� because the resulting sequence can be simply describe as 	all ze�

ros
� The observations that lead to an oscillating sequence ��������� is slightly

more di�cult to describe� but still reasonably easy� On the other hand� if the

observations can only be described by a very complicated system of partial dier�

ential equations� then these observations clearly describe a much more di�cult

phenomenon�

�



This notion of complexity was formalized in the ����s by three researchers�

G� Chaitin� A� Kolmogorov� and R� Solomono� The resulting de�nition de�nes

a complexity K�x� of a sequence of symbols x as the length of the shortest

program p that produces the output x� A sequence of symbols is usually called

a word� By a program� we mean a program in a universal programming language

U �like C or Pascal or Fortran�� Here�

� programming language means that we have an algorithm �called compiler�

that� given a text in the language U � makes some algorithm run on the

computer�

� universal means that we can� in principle� describe an arbitrary algorithm

in this language U �

Thus de�ned value K�x� is usually called the Kolmogorov complexity of the

word x�

This de�nition started an interesting area of research that is often called

Algorithmic Information Theory� For a modern survey of this research area�

see� e�g�� ����

��� Kolmogorov complexity is useful in physics

According to its very de�nition� Kolmogorov complexity describes the algorith�

mic complexity of dierent objects� At �rst glance� this complexity is more

relevant for computers than for describing the objective physical world� How�

ever� Kolmogorov complexity is very useful in physics as well�

First� Kolmogorov complexity forms the basis for de�ning the notion of

randomness� the notion that is central to statistical and quantum physics� see�

e�g�� ��� �� �� �� ��� Thus� Kolmogorov complexity is very useful in foundations

of physics�

Second� several researchers� including M� Gell�Mann� argue� convincingly�

that this notion may be useful in working physics as well� as an important part

of equations that describe the evolution of physical systems ���� In particular�

Gell�Mann shows that Kolmogorov complexity seems to be an appropriate tool

for describing biological systems �and complex systems in general��

�



��� The problem with using Kolmogorov complexity in

physical equations

The main problem with this idea is that there seems to be a wide logical gap

between traditional physical equations and the notions of algorithmic informa�

tion theory� Because of this gap� adding Kolmogorov complexity to physical

equations seems very ad hoc�

Let us explain why there is a �perceived� gap� Traditionally� physics consid�

ers systems of dierential equations that describe how the state of a physical

system changes with time� If we know the initial state of the system s�t�� at some

initial moment of time t�� then we can use these equations to predict the state

of the system s�t� at a future moment t� The prediction algorithm normally

consists of solving �	integrating
� the given system of dierential equations�

As a result� we get a relation s�t� � E�t�� t� s�t���� where E is a computable

function of three variables� two real�valued variables t� and t� and a �usually

multi�component� variable s�t�� that describes the initial state of the system�

This function describes the evolution �change in time� of a physical system and

is� therefore� sometimes called an evolution operator�

As we have already mentioned� Gell�Mann shows that Kolmogorov com�

plexity is an appropriate tool for describing the current state and evolution of

dierent biological systems and other complex systems� On the basic level of

evolution equations� Gell�Mann�s idea is� in eect� to explicitly add Kolmogorov

complexity �e�g�� Kolmogorov complexity of the description of the initial state

s�t���� to the equations� so that the next state become algorithmically depen�

dent on t�� t� s�t��� and also on the Kolmogorov complexity K�s�t��� of the

�description of� the initial state s�t���

There is an immediate problem with this idea�

� We have just mentioned that� in traditional physics� the relation E be�

tween the original state s�t�� and the predicted state s�t� is usually algo�

rithmic�

� However� it is known that Kolmogorov complexity cannot be computed

by any algorithm �see� e�g�� ����� Therefore� if we make the dependence

E explicitly dependent on the Kolmogorov complexity� this dependence E

stops being algorithmic�

This non�algorithmic character of the 	evolution operator
 E is unusual but

not that problematic� because many equations of modern physics �especially of

�



modern super�string theories� are so complicated that no general algorithm is

known for solving them� and it is quite possible that no such general algorithm

exists at all� It is therefore quite reasonable to consider non�algorithmic evo�

lution operators E� i�e�� to extend the original class of algorithmic evolution

operators to some more general class�

A more serious problem is that physically natural generalizations of the class

of all algorithmic evolution operators do not seem to naturally lead exactly to

Kolmogorov complexity� and thus� the emergence of Kolmogorov complexity

does not seem to be well related with physics�

��� What we are planning to do

The main objective of the present paper is to 	bridge
 the above gap� and

to show that Kolmogorov complexity can indeed naturally appear in physical

equations�

� Which non�algorithmic evolution operators

are natural in physics�

��� It is quite possible that evolution operators are non�

algorithmic

We have already mentioned that it is possible that some physical equations

lead to non�algorithmic evolution operators E� A reasonable question is� which

non�algorithmic evolution operators can naturally appear in physics�

��� General description of physical equations

Most physical equations describe an explicit �and thus� algorithmically check�

able� relation between the values of the �elds and their derivatives� a relation

that must hold for all possible moments of time� and at all possible points in

space� The main problem of solving this equation is to �nd the values of these

�elds and derivatives that satisfy the given system of equations�

�



��� Simpli�ed case� �nitely many space�time events

If each equation contained only �nitely many conditions� i�e�� it must be true

in �nitely many moment of time and at �nitely many points of space� then� for

each candidate solution� we would algorithmically check whether this candidate

is indeed a solution or not� This possibility would lead� in principle� to an

algorithm for solving the given equation�

Crudely speaking� in this algorithm� we enumerate all possible candidate

solutions and for each of them� check whether this candidate solution is indeed

a solution or not� We stop checking when we �nd a solution� Of course� this

idea needs some �minor� re�nement if we want to actually use it�

� In principle� there is a continuum of possible real numbers� therefore� there

is a continuum of possible �elds etc� This means that we cannot simply

enumerate all possible values of the �elds�

� However� we are interested not in the abstract mathematical possibilities�

but in the results that can be produced by a computer or at least described

on a sheet of paper� Whatever we can store in the computer is a sequence

of ��s and ��s� i�e�� ultimately� a �nite sequence of symbols from a �nite

alphabet� Whatever we can place on a sheet of paper is� too� a �nite

sequence of symbols in a �nite alphabet� In any given �nite alphabet�

there are only countably many words of �nite length� and therefore� we

can� eectively� enumerate �and try� all these words�

��� Real�life world� in�nitely many space�time events

In real�life physical problems� each equation means the validity of this equality

in in�nitely many moments of time and at in�nitely many spatial points� These

in�nities do not necessarily mean that each problem is indeed not algorithmically

solvable� it simply means that simply directly trying all possible options is no

longer possible�

� In most problems of practical physics� we have indirect algorithmic solv�

ing methods� i�e�� methods which do not use the �impossible� exhaustive

search� In other words� in these problems� we have an indirect way of

checking� in �nitely many computational steps� whether a given system of

equations indeed holds for all in�nitely many points in space�time�

�



� On the other hand� starting from the well�known G�odel�s theorem� it is

known that there are problems in mathematics �and in numerical mathe�

matics� in which no indirect algorithm is possible that would replace the

in�nite exhaustive search by a �nite algorithmic procedure� So far� such

problems have not yet been found in physics� but� as we have already

mentioned� there is a strong evidence that such problems may occur in

physics as well�

How can we describe the resulting possible non�algorithmic evolution operators�

��	 Towards mathematical formulation of physical non�

algorithmic evolution operators

We have already assumed that for every possible candidate solution x� and for

every possible pointm in space�time� checking whether the candidatem satis�es

the given system of equations at this point in space�time� is algorithmically

checkable� Let us denote this algorithmically checkable property by P �x�m��

Therefore� to check whether a candidate x is a solution to the given system

of equations� we must check whether this property P �x�m� is satis�ed for all

possible points in space�time� i�e�� whether the formula �m P �x�m� is true or

not�

Thus� if we have an algorithmically non�computable evolution operator� we

can 	compute
 its result if we can detect whether such formulas �m P �x�m��

with algorithmically checkable properties P � are true or not�

To �nalize this description� we must describe the set of possible values for

the variablem �that describes dierent points in space�time�� In principle� there

are continuum many possible points m in space�time� However� similarly to the

above argument about the world with �nitely many space�time points� we can

argue that we are only interested in the space�time points that are representable

in a computer or at least describable on a sheet of paper� Each such point in

space�time can be described by a �nite sequence of symbols �even a sequence of

��s and ��s�� and therefore� we can� in principle� enumerate all of them� Thus�

we can assume that the variable m runs over all possible sequences of ��s and

��s�

From the mathematical viewpoint� it does not really matter how we describe

these sequences� but from the computer viewpoint� the most useful representa�

tion is to interpret each sequence as a non�negative integer� i�e�� as a natural

�



number�

Thus� if we have a non�computable evolution operator� we can 	compute


it if we can� for every algorithmically checkable predicate Q�m�� check whether

�m Q�m� is true or not� where m runs over all possible natural numbers�

Thus� we can describe physically meaningful non�computable functions as

follows� they are 	computable
 by an algorithm that� in addition to normal com�

puter operations� can also ask� for any given algorithmically checkable predicate

Q�m�� whether the formula �m Q�m� is true or not� In theory of computa�

tion� such 	computing
 is called computing with an oracle �see� e�g�� ����� In

these terms� we are interested in functions that are computable with an oracle

that� for a given algorithmically checkable predicate Q�m�� checks whether the

formula �m Q�m� is true or not�

��
 What we are planning to show

In the following text� we will show that� surprisingly� this class of non�

computable functions coincides with the class of functions that are computable

with respect to Kolmogorov complexity�

This result bridges the above�mentioned gap by explaining why Kolmogorov

complexity naturally appears in physical equations�

� Main result

Comment� In this section� all the variables run over sequence of � and �� or�

equivalently� over natural numbers� Correspondingly� by a function� we mean a

function from natural numbers to natural numbers� or� equivalently� a function

from �nite sequences of ��s and ��s to similar �nite sequences�

De�nition �� We say that a function is physically computable if it can be

computed with an oracle that� for a given algorithmically checkable predicate

Q�m�� checks whether the formula �m Q�m� is true or not�

De�nition �� We say that a function is computable relative to Kolmogorov

complexity if for some universal programming language U � this function is com�

putable with an oracle that� given a word x� returns the Kolmogorov complexity

KU �x� of this word with respect to this language U �

Theorem� A function is physically computable if and only if it is computable

relative to Kolmogorov complexity�

�



Physical comment� Thus� every evolution operator E�t�� t� s�t���� which is phys�

ically computable� can be described as a function that algorithmically depends

on the inputs themselves �i�e�� on t�� t� s�t���� and on the Kolmogorov complexity

of these inputs�

Mathematical comment� We actually prove a result than is stronger than our

Theorem�

� The Theorem states that if a function f�n� is physically computable� then

there exists a universal programming language U such that the function

f�n� can be computed by using the corresponding Kolmogorov complexity

KU �x� as an oracle� In this formulation� it is possible that this language

depends on the function f�n��

� We actually prove that we can select the universal programming language

U from the very beginning and use this same language for all physically

computable functions f�n��

� Proof

��� The structure of the proof

The proof consists of two parts�

� First� we prove that every function that is computable relative to Kol�

mogorov complexity is also physically computable� This is the easier part

of the proof�

� Second� we prove that every function that is physically computable is also

computable relative to Kolmogorov complexity� This is a more technically

complicated part of the proof�

��� First part� proof that that every function that is

computable relative to Kolmogorov complexity is also

physically computable

To prove this result� it is su�cient to show that Kolmogorov complexity itself is

physically computable� i�e�� that Kolmogorov complexity can be computed with

an oracle that� for a given algorithmically checkable predicate Q�m�� checks

whether the formula �m Q�m� is true or not�

�



Indeed� if we have such an oracle� then for every program p� we can check

whether this program halts or not �i�e�� whether it continues inde�nitely without

returning any answer at all� or whether it eventually stops and produces some

answer�� Indeed� for every moment of time t� we can algorithmically check

whether this program p has stopped by this time t or not� by simply running the

program p for this time t� Thus� the property S�t�� meaning that the program

stops by time t� is algorithmically checkable� Therefore� the negation �S�t� of

this property is also algorithmically checkable� Hence� we can use our oracle

to check whether �t �S�t� if true or not� i�e�� whether the program continues

inde�nitely or it stops�

Since we are able to check whether each program halts or not� we can com�

pute the Kolmogorov complexity of a given word x as follows�

� First� we try all programs p of length �� For each of these programs� we

check whether this program halts or not�

� If we conclude that the program p does not halt� we ignore it�

� If we conclude that the program p does halt� we run it until it halts�

and compare its result with x�

If one of the results coincides with x� this means that K�x� � �� so we

can �nish our computations� Otherwise� we conclude that K�x� � ��

� Suppose now that we have already checked all programs of length � � and

none of them generates x� Then� we check all the programs of length ��

Again� for each of these programs p� we check whether this program halts

or not�

� If we conclude that the program p does not halt� we ignore it�

� If we conclude that the program p does halt� we run it until it halts�

and compare its result with x�

If one of the results coincides with x� this means that K�x� � �� so we can

�nish our computations� Otherwise� we conclude that K�x� � �� and try

the next possible length �� �� � � ���

Since one of the programs de�nitely computes x �e�g�� the program write�x���

this algorithm will eventually stop and produce the desired value of the Kol�

mogorov complexity K�x��

�



��� Second part� proof that every function that is phys�

ically computable is also computable relative to Kol�

mogorov complexity

We will start this second part of the proof by designing a universal language U

for which this result will be proven to be true�

To construct this language� we will start with an arbitrary universal language

U�� and then do the following two�step transformation�

First� we produce an intermediate language U� in which all programs have

even length� Programs from this language have one of the two forms�

� of the type ��p and ��p� where p is a program from the language U� whose

length is even� and

� of the type �p� where p is a program from the language U� whose length

is odd�

It is clear that this is a universal language because the original language U�

is universal� and everything that can be computed by a program p from that

original language can also be computed by the corresponding program from the

language U��

The compiler for this intermediate language is easy to write�

� If we get a program� �rst� we check its length� If it is odd� we return an

error message� otherwise� we look at the �rst character of this program

�i�e�� � or ���

� If the �rst character is �� we delete this �� and apply the compiler for the

language U� to the resulting program�

� If the �rst character is �� we delete the �rst two characters and apply the

compiler for the language U� to the resulting program�

Finally� based on this intermediate language� we design the language U that

works as follows�

� If the language U inputs a program p of even length� then it�

� deletes the �rst two characters from this program p� and

� applies U� to the resulting shortened program p��

��



� If U inputs a program p of odd length� then it�

� deletes the �rst character from this program p�

� applies U� to the resulting shortened program p��

� if the language U� halts on p� and produces a word x� it applies U�

to this word x� If the resulting computations halt too� then x is

produced as a result�

Again� it is easy to check that this is a universal language�

Let us show that if we have an oracle that computes the Kolmogorov com�

plexity relative to this universal language� then we can� for every algorithmically

checkable predicate Q�m�� check whether the statement �m Q�m� is true or not�

Indeed� since Q�m� is algorithmically checkable� we can design the following

algorithm� test the property Q�m� for m � �� �� �� � � � until you �nd the value

m for which Q�m� is false� Since the original language U� is universal� there

is a program q in that language that performs the exact same algorithm� This

program halts if and only if the statement �m Q�m� is false� Depending on

whether the length of this program q is odd or even� either the program q� � ��q�

or the program q� � �q performs the same algorithm in the language U��

Let us show that the program q halts if and only if its Kolmogorov complexity

K�q� relative to U is odd� Indeed�

� If K�q� is odd� it means that in the language U � there is a program p of

odd length that produces q� According to the de�nition of U � the only

way to have an odd�length program produce anything is when its output

is a program that halts� Thus� the program q halts�

� Vice versa� let us show that if the program q halts� then K�q� is odd�

Indeed� suppose that we have an even�length program p in the language

U that produces q� By de�nition of U � this means that if we apply the

compiler for U� to the program p�� that is obtained from p by deleting its

�rst two symbols� we get q� In this case� since q halts� the program �p�

also produces the same word q� and the program �p� is � symbol shorter

than the original program p� Thus� if the word q describes a halting

program� then for every even�length program p that generates q� there

exists a shorter odd�length program that generates the same word� Thus�

the shortest program of all programs that generate q is of odd length� i�e��

K�q� is odd�

��



So� if we have an oracle that produces the value of K�x� for every given x� we

can�

� form the program q�

� compute the Kolmogorov complexity K�q�� and

� check whether this number K�q� is odd or even�

Thus� we will be able to decide whether the program q halts or not� i�e�� whether

the statement �m Q�m� is false or true�

The second part of the theorem is thus proven� and so is the theorem itself�

Comment� In the second part of the proof� we have shown that if a function is

physically computable� then it is computable with respect to Kolmogorov com�

plexity de�ned for some universal computer� From the physical viewpoint� this

results answers our question� However� from the theory of computation view�

point� this result raises an interesting open question� Is the above implication

true for an arbitrary universal language� or only for some of these languages�

Acknowledgments

This work was supported in part by NASA under cooperative agreement

NCCW������ by NSF under grants No� DUE�������� and EEC��������� and

by the Future Aerospace Science and Technology Program �FAST� Center for

Structural Integrity of Aerospace Systems� eort sponsored by the Air Force

O�ce of Scienti�c Research� Air Force Materiel Command� USAF� under grant

number F����������������

The authors are thankful to Murray Gell�Mann whose inspiring talk lead to

this research�

References

��� M� Gell�Mann� The Quark and the Jaguar� Adventures in the Simple and

the Complex� Freeman� N�Y�� �����

��� V� Kreinovich and L� Longpr�e� 	Unreasonable eectiveness of symmetry in

physics
� International Journal of Theoretical Physics� ����� Vol� ��� No�

�� pp� ���� �����

��



��� V� Kreinovich and L� Longpr�e� 	Pure Quantum States Are Fundamental�

Mixtures �Composite States� Are Mathematical Constructions� An Argu�

ment Using Algorithmic Information Theory
� International Journal on

Theoretical Physics� ����� Vol� ��� No� �� pp� ��� ����

��� V� Kreinovich and L� Longpr�e� 	Nonstandard �Non���Additive� Probabil�

ities in Algebraic Quantum Field Theory
� International Journal of Theo�

retical Physics� ����� Vol� ��� No� �� pp� ���� �����

��� M� Li and P� M� B� Vit�anyi� An Introduction to Kolmogorov Complexity

and its Applications� Springer�Verlag� N�Y�� �����

��� C� H� Papadimitriou� Computational Complexity� Addison Wesley� San

Diego� �����

��


