
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

3-1-2011

Towards Faster Estimation of Statistics and ODEs
Under Interval, P-Box, and Fuzzy Uncertainty:
From Interval Computations to Rough Set-Related
Computations
Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep
Part of the Computer Engineering Commons

Comments:
Technical Report: UTEP-CS-11-09b
Published in In: Sergey O. Kuznetsov et al. (Eds.) Proceedings of the Thirteenth International
Conference on Rough Sets, Fuzzy Sets and Granular Computing RSFDGrC'2011 (Moscow, Russia, June
25-27, 2011), Springer Lecture Notes on Artificial Intelligence LNAI, Springer-Verlag, Berlin,
Heidelberg, 2011, Vol. 6743, pp. 3-10.
Proceedings of the Thirteenth International Conference on Rough Sets, Fuzzy Sets and Granular
Computing RSFDGrC'2011, Moscow, Russia, June 25-27, 2011.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Kreinovich, Vladik, "Towards Faster Estimation of Statistics and ODEs Under Interval, P-Box, and Fuzzy Uncertainty: From Interval
Computations to Rough Set-Related Computations" (2011). Departmental Technical Reports (CS). Paper 598.
http://digitalcommons.utep.edu/cs_techrep/598

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/598?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Towards Faster Estimation of Statistics and
ODEs Under Interval, P-Box, and Fuzzy

Uncertainty: From Interval Computations to
Rough Set-Related Computations

Vladik Kreinovich

University of Texas at El Paso, El Paso, TX 79968, USA
vladik@utep.edu

Abstract. Interval computations estimate the uncertainty of the result
of data processing in situations in which we only know the upper bounds
∆ on the measurement errors. In interval computations, at each interme-
diate stage of the computation, we have intervals of possible values of the
corresponding quantities. As a result, we often have bounds with excess
width. In this paper, we show that one way to remedy this problem is
to extend interval technique to rough-set computations, where at each
stage, in addition to intervals of possible values of the quantities, we also
keep rough sets representing possible values of pairs (triples, etc.).
The paper’s outline is as follows: we formulate the main problem (Sec-
tion 1), briefly overview interval computations techniques solve this prob-
lem (Section 2), and then explain how the main ideas behind interval
computation techniques can be extended to computations with rough
sets (Section 3).

Keywords: interval computations, interval uncertainty, rough sets,
statistics under interval uncertainty

1 Formulation of the Problem

Need for interval computations. In many real-life situations, we need to process
data, i.e., to apply an algorithm f(x1, . . . , xn) to measurement results x1, . . . , xn.

Measurements are never 100% accurate, so in reality, the actual value xi of
i-th measured quantity can differ from the measurement result x̃i. Because of

these measurement errors ∆xi
def
= x̃i − xi, the result ỹ = f(x̃1, . . . , x̃n) of data

processing is, in general, different from the actual value y = f(x1, . . . , xn) of the
desired quantity y.

In many practical situations, we only know the upper bound ∆i on the (ab-
solute value of) the measurement errors ∆xi. In such situations, the only infor-
mation that we have about the (unknown) actual value of y = f(x1, . . . , xn) is
that y belongs to the range y = [y, y] of the function f over the box x1× . . .×xn:

y = [y, y] = f(x1, . . . ,xn)
def
= {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.



The process of computing this interval range based on the input intervals xi

is called interval computations; see, e.g., [4].

Case of fuzzy uncertainty and its reduction to interval uncertainty. In addition to
bounds, we can also have expert estimates on ∆xi. An expert usually describes
his/her uncertainty by using words from a natural language, like “most probably,
the value of the quantity is between 3 and 4”. To formalize this knowledge, it is
natural to use fuzzy set theory, a formalism specifically designed for describing
this type of informal (“fuzzy”) knowledge; see, e.g., [5].

In fuzzy set theory, the expert’s uncertainty about xi is described by a fuzzy
set, i.e., by a function µi(xi) which assigns, to each possible value xi of the i-th
quantity, the expert’s degree of certainty that xi is a possible value. A fuzzy set

can also be described as a nested family of α-cuts xi(α)
def
= {xi |µi(xi) ≥ α}.

Zadeh’s extension principle can be used to transform the fuzzy sets for xi

into a fuzzy set for y. It is known that for continuous functions f on a bounded
domain this principle is equivalent to saying that, for every α,

y(α) = f(x1(α), . . . ,xn(α)).

In other words, fuzzy data processing can be implemented as layer-by-layer in-
terval computations. In view of this reduction, in the following text, we will
mainly concentrate on interval computations.

2 Interval Computations: Brief Reminder

Interval computations: main idea. Historically the first method for computing
the enclosure for the range is the method which is sometimes called “straight-
forward” interval computations. This method is based on the fact that inside
the computer, every algorithm consists of elementary operations (arithmetic op-
erations, min, max, etc.). For each elementary operation f(a, b), if we know the
intervals a and b for a and b, we can compute the exact range f(a,b). The
corresponding formulas form the so-called interval arithmetic:

[a, a] + [b, b] = [a+ b, a+ b]; [a, a]− [b, b] = [a− b, a− b];

[a, a] · [b, b] = [min(a · b, a · b, a · b, a · b),max(a · b, a · b, a · b, a · b)];
1/[a, a] = [1/a, 1/a] if 0 ̸∈ [a, a]; [a, a]/[b, b] = [a, a] · (1/[b, b]).

In straightforward interval computations, we repeat the computations forming
the program f step-by-step, replacing each operation with real numbers by the
corresponding operation of interval arithmetic. It is known that, as a result, we
get an enclosure Y ⊇ y for the desired range.

From main idea to actual computer implementation. Not every real number can
be exactly implemented in a computer; thus, e.g., after implementing an oper-
ation of interval arithmetic, we must enclose the result [r−, r+] in a computer-
representable interval: namely, we must round-off r− to a smaller computer-
representable value r, and round-off r+ to a larger computer-representable
value r.



Sometimes, we get excess width. In some cases, the resulting enclosure is exact;
in other cases, the enclosure has excess width. The excess width is inevitable
since straightforward interval computations increase the computation time by
at most a factor of 4, while computing the exact range is, in general, NP-hard

(see, e.g., [6]), even for computing the population variance V =
1

n
·

n∑
i=1

(xi −x)2,

where x =
1

n
·

n∑
i=1

xi (see [3]). If we get excess width, then we can use techniques

such as centered form, bisection, etc., to get a better estimate; see, e.g., [4].

Reason for excess width. The main reason for excess width is that intermediate
results are dependent on each other, and straightforward interval computations
ignore this dependence. For example, the actual range of f(x1) = x1 − x2

1 over
x1 = [0, 1] is y = [0, 0.25]. Computing this f means that we first compute
x2 := x2

1 and then subtract x2 from x1. According to straightforward interval
computations, we compute r = [0, 1]2 = [0, 1] and then x1 −x2 = [0, 1]− [0, 1] =
[−1, 1]. This excess width comes from the fact that the formula for interval
subtraction implicitly assumes that both a and b can take arbitrary values within
the corresponding intervals a and b, while in this case, the values of x1 and x2

are clearly not independent: x2 is uniquely determined by x1, as x2 = x2
1.

3 Rough Set Computations

Main idea. The main idea behind (rough) set computations (see, e.g., [1, 7, 8])
is to remedy the above reason why interval computations lead to excess width.
Specifically, at every stage of the computations, in addition to keeping the inter-
vals xi of possible values of all intermediate quantities xi, we also keep several
sets:

– sets xij of possible values of pairs (xi, xj);
– if needed, sets xijk of possible values of triples (xi, xj , xk); etc.

In the above example, instead of just keeping two intervals x1 = x2 = [0, 1], we
would then also generate and keep the set x12 = {(x1, x

2
1) |x1 ∈ [0, 1]}. Then,

the desired range is computed as the range of x1 − x2 over this set – which is
exactly [0, 0.25].

How can we propagate this set uncertainty via arithmetic operations? Let
us describe this on the example of addition, when, in the computation of f , we
use two previously computed values xi and xj to compute a new value xk :=
xi+xj . In this case, we set xik = {(xi, xi+xj) | (xi, xj) ∈ xij}, xjk = {(xj , xi+
xj) | (xi, xj) ∈ xij}, and for every l ̸= i, j, we take

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl}.

From main idea to actual computer implementation. In interval computations, we
cannot represent an arbitrary interval inside the computer, we need an enclosure.



Similarly, we cannot represent an arbitrary set inside a computer, we need an
enclosure.

To describe such enclosures, we fix the number C of granules (e.g., C = 10).
We divide each interval xi into C equal parts Xi; thus each box xi×xj is divided
into C2 subboxes Xi ×Xj . We then describe each set xij by listing all subboxes
Xi ×Xj which have common elements with xij ; the union of such subboxes is
an enclosure for the desired set xij . This enclosure is a P-upper approximation
to the desired set.

This enables us to implement all above arithmetic operations. For example, to
implement xik = {(xi, xi+xj) | (xi, xj) ∈ xij}, we take all the subboxes Xi×Xj

that form the set xij ; for each of these subboxes, we enclosure the corresponding
set of pairs {(xi, xi + xj) | (xi, xj) ∈ Xi ×Xj} into a set Xi × (Xi +Xj). This
set may have non-empty intersection with several subboxes Xi ×Xk; all these
subboxes are added to the computed enclosure for xik. One can easily see that
if we start with the exact range xij , then the resulting enclosure for xik is an
(1/C)-approximation to the actual set – and so when C increases, we get more
and more accurate representations of the desired set.

Similarly, to find an enclosure for

xkl = {(xi + xj , xl) | (xi, xj) ∈ xij , (xi, xl) ∈ xil, (xj , xl) ∈ xjl},

we consider all the triples of subintervals (Xi,Xj ,Xl) for which Xi ×Xj ⊆ xij ,
Xi × Xl ⊆ xil, and Xj × Xl ⊆ xjl; for each such triple, we compute the box
(Xi +Xj)×Xl; then, we add subboxes Xk ×Xl which intersect with this box
to the enclosure for xkl.

Toy example: computing the range of x−x2. In straightforward interval compu-
tations, we have r1 = x with the exact interval range r1 = [0, 1], and we have
r2 = x2 with the exact interval range x2 = [0, 1]. The variables r1 and r2 are de-
pendent, but we ignore this dependence and estimate r3 as [0, 1]−[0, 1] = [−1, 1].

In the new approach: we have r1 = r2 = [0, 1], and we also have r12. First,
we divide the range [0, 1] into 5 equal subintervals R1. The union of the ranges
R2

1 corresponding to these 5 subintervals R1 is [0, 1], so r2 = [0, 1]. We divide
this interval r2 into 5 equal sub-intervals [0, 0.2], [0.2, 0.4], etc. We now compute
the set r12 as follows:

– for R1 = [0, 0.2], we have R2
1 = [0, 0.04], so only sub-interval [0, 0.2] of the

interval r2 is affected;

– for R1 = [0.2, 0.4], we have R2
1 = [0.04, 0.16], so also only sub-interval [0, 0.2]

is affected;

– for R1 = [0.4, 0.6], we have R2
1 = [0.16, 0.36], so two sub-intervals [0, 0.2]

and [0.2, 0.4] are affected, etc.



× × ×

× ×

×

× ×

×

r1

r2

For each possible pair of small boxes R1×R2, we have R1−R2 = [−0.2, 0.2],
[0, 0.4], or [0.2, 0.6], so the union of R1 −R2 is r3 = [−0.2, 0.6].

If we divide into more and more pieces, we get the enclosure which is closer
and closer to the exact range [0, 0.25].

How to Compute rik. The above example is a good case to illustrate how we
compute the range r13 for r3 = r1 − r2. Indeed, since r3 = [−0.2, 0.6], we divide
this range into 5 subintervals [−0.2,−0.04], [−0.04, 0.12], [0.12, 0.28], [0.28, 0.44],
[0.44, 0.6].

– For R1 = [0, 0.2], the only possible R2 is [0, 0.2], so R1 −R2 = [−0.2, 0.2].
This covers [−0.2,−0.04], [−0.04, 0.12], and [0.12, 0.28].

– For R1 = [0.2, 0.4], the only possible R2 is [0, 0.2], so R1 − R2 = [0, 0.4].
This interval covers [−0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].

– For R1 = [0.4, 0.6], we have two possible R2:
• for R2 = [0, 0.2], we have R1 − R2 = [0.2, 0.6]; this covers [0.12, 0.28],
[0.28, 0.44], and [0.44, 0.6];

• for R2 = [0.2, 0.4], we have R1 −R2 = [0, 0.4]; this covers [−0.04, 0.12],
[0.12, 0.28], and [0.28, 0.44].

– For R1 = [0.6, 0.8], we have R2
1 = [0.36, 0.64], so three possible R2: [0.2, 0.4],

[0.4, 0.6], and [0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8]− [0.2, 0.8] =
[−0.2, 0.6], so all 5 subintervals are affected.

– Finally, for R1 = [0.8, 1.0], we have R2
1 = [0.64, 1.0], so two possible R2:

[0.6, 0.8] and [0.8, 1.0], to the total of [0.6, 1.0]. Here, [0.8, 1.0] − [0.6, 1.0] =
[−0.2, 0.4], so the first 4 subintervals are affected.

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

r1

r3

Limitations of this approach. The main limitation of this approach is that when
we need an accuracy ε, we must use ∼ 1/ε granules; so, if we want to compute the



result with k digits of accuracy, i.e., with accuracy ε = 10−k, we must consider
exponentially many boxes (∼ 10k). In plain words, this method is only applicable
when we want to know the desired quantity with a given accuracy (e.g., 10%).

Cases when this approach is applicable. In practice, there are many problems
when it is sufficient to compute a quantity with a given accuracy: e.g., when
we detect an outlier, we usually do not need to know the variance with a high
accuracy – an accuracy of 10% is more than enough.

Let us describe the case when interval computations do not lead to the exact
range, but set computations do – of course, the range is “exact” modulo accuracy
of the actual computer implementations of these sets.

Example: estimating variance under interval uncertainty. Suppose that we know
the intervals x1, . . . ,xn of possible values of x1, . . . , xn, and we need to compute

the range of the variance V =
1

n
·M− 1

n2
·E2, whereM

def
=

n∑
i=1

x2
i and E

def
=

n∑
i=1

xi.

A natural way to compute V is to compute the intermediate sums Mk
def
=

k∑
i=1

x2
i and Ek

def
=

k∑
i=1

xi. We start with M0 = E0 = 0; once we know the pair

(Mk, Ek), we compute (Mk+1, Ek+1) = (Mk+x2
k+1, Ek+xk+1). Since the values

of Mk and Ek only depend on x1, . . . , xk and do not depend on xk+1, we can con-
clude that if (Mk, Ek) is a possible value of the pair and xk+1 is a possible value
of this variable, then (Mk+x2

k+1, Ek+xk+1) is a possible value of (Mk+1, Ek+1).
So, the set p0 of possible values of (M0, E0) is the single point (0, 0), and once
we know the set pk of possible values of (Mk, Ek), we can compute pk+1 as

{(Mk + x2, Ek + x) | (Mk, Ek) ∈ pk, x ∈ xk+1}.

For k = n, we will get the set pn of possible values of (M,E). Based on this set,

we can then find the exact range of the variance V =
1

n
·M − 1

n2
· E2.

What C should we choose to get the results with an accuracy ε ·V ? On each
step, we add the uncertainty of 1/C. So, after n steps, we add the inaccuracy of
n/C. Thus, to get the accuracy n/C ≈ ε, we must choose C = n/ε.

What is the running time of the resulting algorithm? We have n steps; at each
step, we need to analyze C3 combinations of subintervals for Ek, Mk, and xk+1.
Thus, overall, we need n · C3 steps, i.e., n4/ε3 steps. For fixed accuracy C ∼ n,
we need O(n4) steps – a polynomial time, and for ε = 1/10, the coefficient at n4

is still 103 – quite feasible.
For example, for n = 10 values and for the desired accuracy ε = 0.1, we need

103 · n4 ≈ 107 computational steps – “nothing” for a Gigaherz (109 operations
per second) processor on a usual PC. For n = 100 values and the same desired
accuracy, we need 104 · n4 ≈ 1012 computational steps, i.e., 103 seconds (15
minutes) on a Gigaherz processor. For n = 1000, we need 1015 steps, i.e., 106

seconds – 12 days on a single processor or a few hours on a multi-processor
machine.

In comparison, the exponential time 2n needed in the worst case for the exact
computation of the variance under interval uncertainty, is doable (210 ≈ 103



steps) for n = 10, but becomes unrealistically astronomical (2100 ≈ 1030 steps)
already for n = 100.

Comment. When the accuracy increases to ε = 10−k, we get an exponential
increase in running time – but this is OK since, as we have mentioned, the
problem of computing variance under interval uncertainty is, in general, NP-
hard.

Other statistical characteristics. Similar algorithms can be presented for com-
puting many other statistical characteristics [1].

Systems of ordinary differential equations (ODEs) under interval uncertainty. A
general system of ODEs has the form ẋi = fi(x1, . . . , xm, t), 1 ≤ i ≤ m. Interval
uncertainty usually means that the exact functions fi are unknown, we only
know the expressions of fi in terms of parameters, and we have interval bounds
on these parameters.

There are two types of interval uncertainty: we may have global parameters
whose values are the same for all moments t, and we may have parameters
whose values may differ at different moments of time – but always within given
intervals. In general, we have a system of the type

ẋi = fi(x1, . . . , xm, t, a1, . . . , ak, b1(t), . . . , bl(t)),

where fi is a known function, and we know the intervals aj and bj(t) of possible
values of ai and bj(t).

For the general system of ODEs, Euler’s equations take the form

xi(t+∆t) = xi(t) +∆t · fi(x1(t), . . . , xm(t), t, a1, . . . , ak, b1(t), . . . , bl(t)).

Thus, if for every t we keep the set of all possible values of a tuple

(x1(t), . . . , xm(t), a1, . . . , ak),

then we can use the Euler’s equations to get the exact set of possible values of
this tuple at the next moment of time.

The reason for exactness is that the values xi(t) depend only on the previous
values bj(t−∆t), bj(t− 2∆t), etc., and not on the current values bj(t).

To predict the values xi(T ) at a moment T , we need n = T/∆t iterations.
To update the values, we need to consider all possible combinations ofm+k+l

variables x1(t), . . . , xm(t), a1, . . . , ak, b1(t), . . . , bl(t); so, to predict the values at
moment T = n ·∆t in the future for a given accuracy ε > 0, we need the running
time n · Cm+k+l ∼ nk+l+m+1. This is still polynomial in n.

Towards extension to p-boxes and classes of probability distributions. Often, in
addition to the interval xi of possible values of the inputs xi, we also have
partial information about the probabilities of different values xi ∈ xi. An exact
probability distribution can be described, e.g., by its cumulative distribution
function (cdf) Fi(z) = Prob(xi ≤ z). In these terms, a partial information means
that instead of a single cdf, we have a class F of possible cdfs.

A practically important particular case of this partial information is when, for
each z, instead of the exact value F (z), we know an interval F(z) = [F (z), F (z)]



of possible values of F (z). Such an “interval-valued” cdf is called a probability
box, or a p-box, for short; see, e.g., [2].

Propagating p-box uncertainty via computations: a problem. Once we know
the classes Fi of possible distributions for xi, and data processing algorithms
f(x1, . . . , xn), we would like to know the class F of possible resulting distribu-
tions for y = f(x1, . . . , xn).

Idea. For problems like systems of ODEs, it is sufficient to keep and update, for
all t, the set of possible joint distributions for the tuple (x1(t), . . . , a1, . . .).

Conclusions. In many practical situations, for each quantity xi, we only know

the upper bound ∆i on the measurement error ∆xi
def
= x̃i−xi; in this case, once

we know the measurement result x̃i, the only information that we have about the
actual (unknown) value xi is that it belongs to the interval xi = [x̃i−∆i, x̃i+∆i].
For each quantity y = f(x1, . . . , xn), different values xi ∈ xi lead, in general, to
different values y; it is therefore desirable to find the range y of all such values.
In this paper, we show that for many problems, we can efficiently compute this
range if we follow the original computation of y step-by-step with a rough set
instead of a collection of exact values: we start with a box x1 × . . . × xn, and
then estimate rough sets corresponding to each intermediate result.

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 and DUE-0926721 and by Grant 1 T36
GM078000-01 from the National Institutes of Health. The author is thankful
to Dominik Slezak and Sergey Kuznetsov for the invitation and for the helpful
editing advise.

References

1. Ceberio, C., Ferson, S., Kreinovich, V., Chopra, S., Xiang, G., Murguia, A., San-
tillan, J.: How to take into account dependence between the inputs: from interval
computations to constraint-related set computations, Proc. 2nd Int’l Workshop
on Reliable Engineering Computing, Savannah, Georgia, February 22–24, 127–154
(2006); final version: Journal of Uncertain Systems, 1(1), 11–34 (2007)

2. Ferson, S.: RAMAS Risk Calc 4.0, CRC Press, Boca Raton, Florida (2002)
3. Ferson, S., Ginzburg, L., Kreinovich, V., Aviles, M.: Computing variance for inter-

val data is NP-hard, ACM SIGACT News, 33(2), 108–118 (2002)
4. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, Springer,

London (2001)
5. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle River,

NJ (1995)
6. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and

Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht
(1997)

7. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer,
Dordrecht (1991)

8. Shary, S. P.: Solving tied interval linear systems, Siberian Journal of Numerical
Mathematics, 7(4), 363–376 (2004) in Russian


	University of Texas at El Paso
	DigitalCommons@UTEP
	3-1-2011

	Towards Faster Estimation of Statistics and ODEs Under Interval, P-Box, and Fuzzy Uncertainty: From Interval Computations to Rough Set-Related Computations
	Vladik Kreinovich
	Recommended Citation



