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Abstract

Physicists usually assume that events with a very small probability cannot occur. Kolmogorov com-
plexity formalizes this idea for non-quantum events. We show how this formalization can be extended to
quantum events as well.
c⃝2011 World Academic Press, UK. All rights reserved.
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1 Algorithmic Randomness and Kolmogorov Complexity: Motiva-
tions and Definitions

Physicists’ idea: events with a very small probability cannot occur. Physicists usually assume that
events with a very small probability cannot occur. For example, in principle, due to the Brownian motion, it
is possible that the kettle placed on a cold stove starts boiling. The probability of this event is positive but
very small.

A mathematician would say that this event is possible but rare. However, a physicist would say that this
event is simply not possible. It is desirable to formalize this intuition of physicists.

Kolmogorov’s formalization. To formalize this intuition of physicists, Kolmogorov proposed a new defi-
nition of a random sequence, a definition that enables us to separate physically random binary sequences (like
sequences that appear in coin flipping experiments or sequences that appear in quantum measurements) from
sequence that follow some pattern.

Intuitively, if a sequence is random, it satisfies all the probability laws. A probability law is a statement S
that is true with probability 1: P (S) = 1. So, to prove that a sequence is not random, we must show that it
does not satisfy one of these laws.

Sequences that do not satisfy a given law S form a definable with probability 0. Vice versa, for every
definable set C of probability 0, the statement of “not belonging” to this set is true with probability 1 and is,
thus, a probability law.

Thus, we can say that a sequence s is not random if it belongs to some (definable) set of probability 0.
Thus, in the 1960s, Kolmogorov and his student Martin-Löf defined a sequence s to be random if it does not
belong to any definable set C of probability 0; see, e.g., [3] for details.

This definition is consistent. Indeed, every definable set C is defined by a finite sequence of symbols (its
definition). Since there are countably many sequences of symbols, there are countably many definable sets C.
So, the complement −R to the class of all R of all random sequences also has probability 0.

2 More Physically Adequate Versions of Kolmogorov Complexity
and Their Applications

Towards a more physically adequate versions of Kolmogorov randomness. The original 1960s
Kolmogorov’s definition only explains why events with probability 0 do not happen. What we need is to
formalize the physicists’ intuition that events with very small probability cannot happen.
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At first glance, there is a seemingly natural formalization of this intuition: there exists the “smallest
possible probability” p0 such that:

• if the computed probability p of some event is larger than p0, then this event can occur, while

• if the computed probability p is ≤ p0, the event cannot occur.

For example, we want to formalize the idea that a fair coin cannot fall heads 100 times in a row. Indeed,
the probability 2−100 of this event is extremely small. So, if we select a threshold p0 for which p0 ≥ 2−100,
we get the desired justification. However, on second glance, one can see that there is a problem with this
approach. Indeed, every length-100 sequence of heads and tails has exactly the same probability. So, if we
choose p0 ≥ 2−100, we will thus exclude all sequences of 100 heads and tails. However, anyone can toss a coin
100 times and get some sequence. This proves that some such sequences are physically possible.

Comment. A similar argument is known as Kyburg’s lottery paradox: In a big (e.g., state-wide) lottery,
the probability of winning the Grand Prize is very small, so a reasonable person should not expect to win.
However, some people do win big prizes.

Towards a new definition of randomness. A new more physically adequate definition of randomness
was proposed in [4, 5, 6]. This definition is based on the following analysis of what it means to be normal.

Let us illustrate this analysis on the example of height. A person of height ≥ 6 ft is still normal. If instead
of 6 ft, we consider 6 ft 1 in, 6 ft 2 in, etc., then at some point we will arrive at a height h0 for which everyone
taller than h0 is abnormal. We are not sure what is this threshold value h0, but we are sure that such a value
h0 exists.

This argument can be extended to a general situation. On the universal set U , we have sets A1 ⊇ A2 ⊇
. . . ⊇ An ⊇ . . . for which P (∩An) = 0. In the above example, A1 is the set of all the people with height ≥ 6
ft, A2 is the set of all the people with height ≥ 6 ft 1 in, etc. We know that there exists an N for which all
elements of the set AN are not random. Thus, we arrive at the following definition.

Definition 1. A set R ⊆ U is called a set of random elements if for every definable sequence of sets An for
which An ⊇ An+1 for all n and P (∩An) = 0, there exists an integer N for which AN ∩R = ∅.

Mathematical comment. For this definition to be precise, we need to define what “definable” means. Such a
definition is straightforward. Let L be a theory, let P (x) be a formula from the language of the theory L, with
one free variable x so that the set {x |P (x)} is defined in L. We will then call the set {x |P (x)} L-definable.

One potential problem of this definition is that it is a definition in a meta-language, and our objective is
to be able to make mathematical statements about L-definable sets. Thus, we must have a stronger theory
M in which the class of all L-definable sets is a countable set. One can prove that such M always exists; see,
e.g., [4].

Coin example. Let us illustrate the above definition on the example of coin tossing. In this example, the
universal set U = {H,T}IN is the set of all possible infinite sequences of Heads (H) and Tails (T). Here, An is
the set of all the sequences that start with n heads. The sequence {An} is decreasing and definable, and its
intersection has probability 0. Therefore, for every set R of random elements of U , there exists an integer N
for which AN ∩ T = ∅.

This means that if a sequence s ∈ R is random and starts with N heads, it must consist of heads only. In
physical terms, it means that a random sequence cannot start with N heads. This is exactly what we wanted
to formalize.

From random to typical (not abnormal). The above idea can be used beyond randomness, to formalize
a more general idea that not all solutions to the physical equations are physically meaningful.

Indeed, when a cup breaks into pieces, the corresponding trajectories of molecules make physical sense.
However, when we reverse all the velocities, we get pieces assembling themselves into a cup.

Newton’s equations do not change when we simply reverse the time. Thus, from the mathematical view-
point, this “reversed” solution satisfies the same physical equations as the original one. However, from the
physical viewpoint, the reversed solution is clearly impossible.
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A usual physicist’s explanation is that the reversed process is non-physical since its initial conditions are
“degenerate” (“abnormal”): once we modify the initial conditions even slightly, the pieces will no longer get
together. How can we formalize this notion of abnormality?

Towards a new definition of non-abnormality. Let us go back to the same example that we used to
formalize randomness. A person of height 6 ft is still normal. If instead of 6 ft, we consider 6 ft 1 in, 6 ft 2
in, etc., then exists a threshold value h0 for which everyone taller than h0 is abnormal. We are not sure what
is this value h0, but we are sure such such a value h0 exists.

In general, on the universal set U , we have sets A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . for which ∩An = ∅. In the
above example, A1 is the set of all the people with height ≥ 6 ft, A2 is the set of all the people with height
≥ 6 ft 1 in, etc. Thus, we arrive at the following definition.

Definition 2. A set T ⊆ U is called a set of typical elements if for every definable sequence of sets An for
which An ⊇ An+1 for all n and ∩An = ∅, there exists an N for which AN ∩ T = ∅.

Coin example. Let us illustrate this definition on the coin example. In this example, we have the universal
set U = {H,T}IN, and An is the set of all the sequences that start with n heads and has a tail.

The sequence {An} is decreasing and definable, and its intersection is empty. Therefore, for every set T of
typical elements of U , there exists an integer N for which AN ∩ T = ∅. This means that if a sequence s ∈ T
is “random” (i.e., has both heads and tails) and starts with N heads, it must consist of heads only.

In physical terms, this means that a random sequence cannot start with N heads. This is exactly what
we wanted to formalize.

Consistency proof. Let us prove that this definition is consistent. Moreover, we will prove that for every
ε > 0, there exists a set T of typical elements for which P (T ) ≥ 1− ε.

Indeed, similarly to the case of definable sets, there are countably many definable sequences {An}: {A(1)
n },

{A(2)
n }, . . . that satisfy the above conditions. For each such sequence k, we have ∩An = ∅ and thus, P

(
A

(k)
n

)
→

0 as n → ∞. Hence, there exists Nk for which P
(
A

(k)
Nk

)
≤ ε · 2−k. We can now take T def

= −
∞∪
k=1

A
(k)
Nk

. For

this set, since P
(
A

(k)
Nk

)
≤ ε · 2−k, we have

P

( ∞∪
k=1

A
(k)
Nk

)
≤

∞∑
k=1

P
(
A

(k)
Nk

)
≤

∞∑
k=1

ε · 2−k = ε.

Hence, P (T ) = 1− P

( ∞∪
k=1

A
(k)
Nk

)
≥ 1− ε.

Ill-posed problems: in brief. Let us give an example that the above definition of typicalness is not just
philosophically interesting, it is practically useful. As such an example, we will take ill-posed problems.

What are ill-posed problems and why are they useful? One of the main objectives of science is to provide
guaranteed estimates for physical quantities and guaranteed predictions for these quantities. The problem is
that both estimation and prediction are ill-posed in the sense that arbitrarily small (practically un-detectable)
changes in measurement results can lead to drastic changes in the estimates and predictions.

For example, every measurement devices are inertial, hence they suppress high frequencies ω. So, for large
ω, the signals φ(x) and φ(x) + sin(ω · t) are indistinguishable.

At present, there are several approaches to solving this problem: statistical regularization (filtering),
Tikhonov regularization (i.e., restricting ourselves to a certain class of signals, e.g., signals for which |ẋ| ≤ ∆),
expert-based regularization, etc. The main problem with these approaches is that they provide no guarantee.

It turns out that if we restrict ourselves to “not abnormal” solutions, problems become well-posed. Let
us explain this on the example of an ill-posed problem of estimating a state s ∈ S based on the measurement
results. In this context, a measurement can be formalized as a function f that maps every state s ∈ S into an
observation r = f(s) ∈ R. Usually, if we perform a sufficient number of measurements, then, theoretically, we
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can reconstruct the state s as s = f−1(r). However, as we have mentioned, the problem is that small changes
in r can lead to huge changes in s – i.e., that the inverse function f−1 is not continuous.

As the following result shows, the situation changes if we we restrict ourselves to “not abnormal” solutions.

Proposition 1. Let S be a definably separable metric space, let T be a set of all not abnormal elements of
S, and let f : S → R be a continuous 1-1 function. Then, the inverse mapping f−1 : R → S is continuous
for every r ∈ f(T ).

Proof. It is known that if a function f is continuous and 1-1 on a compact set, then the inverse function
f−1 is also continuous. To, to prove our result, it is sufficient to show that the set T can be included in some
compact set.

Let us recall that a set X is compact if and only if it is closed and for every ε, it has a finite ε-net, i.e., a
finite set {s1, . . . , sN} such that every point x ∈ X is ε-close to one of the values si. It is thus sufficient to
prove that for every for every ε, the set T has a finite ε-net. Then, its closure T will be the desired compact
set.

Indeed, the space S is definably separable, meaning that there exists a definable sequence s1, . . . , sn, . . .

which is everywhere dense in S. Let us now take An
def
= −

n∪
i=1

Bε(si), where Bε(s)
def
= {x : d(x, s) ≤ ε} denotes

an ball of radius ε with a center in a point s.
Since si are everywhere dense, we have ∩An = ∅. Hence, there exists N for which AN ∩ T = ∅. Since

AN = −
N∪
i=1

Bε(si), this means that T ⊆
N∪
i=1

Bε(si). Hence, the set {s1, . . . , sN} is the desired ε-net for T .

The proposition is proven.

Another practical use of algorithmic randomness: when to stop an iterative algorithm. In
numerical mathematics, we often know an iterative process whose results xk are known to converge to the
desired solution x, but we do not know when to stop to guarantee that dX(xk, x) ≤ ε.

A usual heuristic approach is to stop when dX(xk, xk+1) ≤ δ for some δ > 0. For example, in physics,
we can use linear, quadratic, etc. approximations. Usually, we assume that if the 2nd order terms are small,
then we can use the linear (1st order) expression as an approximation.

The use of typicalness enables us to provide a guaranteed stopping criterion. Indeed, let {xk} ∈ S, k be
an integer, and ε > 0 a real number. We say that the value xk is ε-accurate if dX(xk, limxp) ≤ ε.

Let d ≥ 1 be an integer. By a stopping criterion, we mean a function c : Xd → IR+
0 that satisfies the

following two properties:

• if {xk} ∈ S, then c(xk, . . . , xk+d−1) → 0; and

• if for some {xn} ∈ S and k, c(xk, . . . , xk+d−1) = 0, then xk = . . . = xk+d−1 = limxp.

Proposition 2. [4] Let c be a stopping criterion. Then, for every ε > 0, there exists a δ > 0 such that if
c(xk, . . . , xk+d−1) ≤ δ, and the sequence {xn} is not abnormal, then xk is ε-accurate.

3 Extension to Quantum Physics: Motivations, Definitions, and
Results

Need to extend algorithmic randomness to quantum physics. The above definitions of algorithmic
randomness and typicalness assume that we have a set (of possible states) and a probability measure on the
set of all the states. In other words, these definitions cover only classical (non-quantum) physics.

In quantum physics, for each measurable quantity, we also have a probability distribution, but in general,
there is no single probability distribution describing a given quantum state. Instead, for each binary (yes-no)
observable a, we have the probability m(a) of the “yes” answer.

Traditionally, logic is understood as the study of all yes-no statements, i.e., statements that can be either
true or false. Correspondingly, the set of all binary observables in quantum physics is usually called a quantum
logic L.
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In the traditional formulation of quantum mechanics (see, e.g., [1, 2]), states are described by complex-
valued functions ψ(x) (called wave functions). The probability of finding a particle of for which

∫
|ψ(x)|2 dx <

∞. In mathematical terms, the set of all such functions forms a a Hilbert space H. In these terms, observables
correspond to (closed) subspaces of this Hilbert space: every observable can be identified with the set of all
the wave functions for which this observable returns “true” with probability 1. (However, it turned out be
useful to consider more general (non-Hilbert) quantum logics as well.)

It is therefore natural to provide the following modification of the above definition.

Toward a natural extension of randomness to quantum logics. Let us recall in the non-quantum
case, a set T ⊆ U is called a set of typical elements if for every definable sequence of sets An for which
An ⊇ An+1 for all n and ∩An = ∅, there exists an N for which AN ∩ T = ∅.

In this definition, a set A is possible if A ∩ T ≠ ∅ and impossible if A ∩ T = ∅.
In quantum logic:

• a natural analogue of the universal set U is the quantum logic, the set L,

• a natural analogue of the subset relation ⊇ is the ordering relation ≥, subset relation between the
corresponding subspaces,

• an analogue of the intersection is the meet ∧ – intersection of the subspaces, and

• a natural analogue of the empty set is the 0 element (= an observable that is always false).

This analogy enables us to extend the above definition to quantum logics that do not necessarily come from
a Hilbert space.

Definition 3. An element T ∈ L is called largest-typical if for every definable sequence An ∈ L for which
An ≥ An+1 for all n and ∧An = 0, there exists an integer N for which AN ∧ T = 0.

Comment. Similarly to the non-quantum case, we say that A is possible if A ∧ T ̸= 0 and impossible if
A ∧ T = 0.

Towards a consistency result. Is this definition consistent? We would like to prove that for every ε > 0,
there exists a largest-typical element T for which m(T ) ≥ 1− ε.

To prove this result, we assume that L is a complete ortholattice such that:

• if An ≥ An+1, then An → ∧An;

• lattice operations ∨ and ∧ are continuous;

• the function m : L→ [0, 1] is continuous.

Comment. It should be mentioned that these assumptions are non-trivial: e.g., for subspaces of the 2-
dimensional space IR2, the join operation ∨ is not continuous. Indeed, by definition, the join a ∨ b is the
smallest element that is larger than both a and b. For linear subspaces a and b, this means that is the smallest
linear space that contains both a and b – i.e., the linear span of the union

So, if a is a straight line, and bn is a line at an angle αn =
1

n
→ 0 from a, then a ∨ bn = IR2 for all n, so

a ∨ bn → IR2. However, in the limit, bn → a and thus, a ∨ bn = IR2 ̸→ a ∨ a = a.

Consistency proof. The main idea behind this proof is the same as before:

• there exists countably many definable sequences {An}:

{A(1)
n }, {A(2)

n }, . . . ;

• so, we can take T
def
= −

∞∨
k=1

A
(k)
Nk

for some Nk.
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However, in the quantum case, we cannot directly apply the original proof. Indeed, the original proof used
the fact that P (A ∨B) ≤ P (A) + P (B), but in quantum logic, we may have m(A ∨B) > m(A) +m(B).

So, our new idea is to select Nk for which

m
(
A

(1)
N1

∨ . . . ∨A(k)
Nk

)
< ε.

Let us show how this can be done.
Let us assume that we have already selected the values N1, . . . , Nk for which

m
(
A

(1)
N1

∨ . . . ∨A(k)
Nk

)
< ε.

Since A
(k+1)
n → 0 and the join operation ∨ is continuous, we have

A
(1)
N1

∨ . . . ∨A(k)
Nk

∨A(k+1)
n → A

(1)
N1

∨ . . . ∨A(k)
Nk
.

Since m is continuous, we have

m
(
A

(1)
N1

∨ . . . ∨A(k)
Nk

∨A(k+1)
n

)
→ m

(
A

(1)
N1

∨ . . . ∨A(k)
Nk

)
< ε.

So, there exists a value Nk+1 for which

m
(
A

(1)
N1

∨ . . . ∨A(k)
Nk

∨A(k+1)
Nk+1

)
< ε.

In the limit, we have m(−T ) = m

( ∞∨
k=1

A
(k)
Nk

)
≤ ε, hence m(T ) ≥ 1− ε. The statement is proven.
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