
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

5-2014

Wiener's Conjecture About Transformation
Groups Helps Predict Which Fuzzy Techniques
Work Better
Francisco Zapata
University of Texas at El Paso, fazg74@gmail.com

Olga Kosheleva
University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Computer Sciences Commons
Comments:
Technical Report: UTEP-CS-14-26a
Published in Proceedings of the 2014 Annual Conference of the North American Fuzzy Information
Processing Society NAFIPS'2014, Boston, Massachusetts, June 24-26, 2014.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Zapata, Francisco; Kosheleva, Olga; and Kreinovich, Vladik, "Wiener's Conjecture About Transformation Groups Helps Predict
Which Fuzzy Techniques Work Better" (2014). Departmental Technical Reports (CS). Paper 836.
http://digitalcommons.utep.edu/cs_techrep/836

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/836?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F836&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Wiener’s Conjecture About Transformation Groups
Helps Predict Which Fuzzy Techniques Work Better

Francisco Zapata1, Olga Kosheleva2, and Vladik Kreinovich3
1Research Institute for Manufacturing & Engineering Systems

2Department of Teacher Education
2Department of Computer Science

University of Texas at El Paso
El Paso, Texas 79968, USA

fazg74@gmail.com, olgak@utep.edu, vladik@utep.edu

Abstract—Often, application success only comes when we
select specific fuzzy techniques (t-norm, membership function,
etc.) – and in different applications, different techniques are the
best. How to find the best technique? Exhaustive search of all
techniques is not an option: there are too many of them. We
need to come up with a narrow class of promising techniques,
so that trying them all is realistic. In this paper, we show that
such a narrowing can be obtained from transformation groups
techniques motivated by N. Wiener’s conjecture – which was, in
its turn, motivated by observations about human vision.

I. FORMULATION OF THE PROBLEM

Formulation of the problem. Often, application succeed
only comes when we select specific fuzzy techniques (t-norm,
membership function, etc.) – and in different applications,
different techniques are the best; see, e.g., [4], [8], [14]. How
to find the best technique?

Exhaustive search of all techniques is not an option: there
are too many of them. We need to come up with a narrow class
of promising techniques, so that trying them all is realistic.

What we do in this paper. We show that such a narrowing can
be obtained from transformation groups techniques motivated
by N. Wiener’s conjecture – which was, in its turn, motivated
by observations about human vision.

Comment. Some of these results first appeared in [5], [6], [7].

II. WIENER’S CONJECTURE: REMINDER

Observation that motivated Wiener’s conjecture. The closer
we are to an object, the better we can determine its shape.
Experiments show that there are distinct phases in this deter-
mination.

• When the object is very far, all we see is a formless
blurb – in other words, objects obtained from other
by arbitrary smooth transformations cannot be distin-
guished.

• When the object gets closer, we can detect whether it
is smooth or has sharp angles. We may see a circle as
an ellipse, a square as a rhombus (diamond). At this
stage, images obtained by a projective transformation
are indistinguishable.

• When the object gets closer, we can detect which lines
are parallel but we may not yet detect the angles. For
example, we are not sure whether what we see is a
rectangle or a parallelogram. This stage corresponds
to affine transformation.

• Then, we have a stage of similarity transformations
– when we detect the shape but cannot yet detect its
size.

• Finally, when the object is close enough, we can detect
both its shape and its size.

Each stage can be this described by an appropriate transfor-
mation group (see a formal description below).

Wiener’s conjecture. Humans result from billions of years of
evolution. So, Wiener conjectured that if there was a group
intermediate between, e.g., all projective and all continuous
transformations, our vision mechanism would have used it.
Thus, according to the 1940s Wiener’s conjecture, such inter-
mediate groups are not possible [13].

Wiener’s conjecture confirmed. In the 1960s, Wiener’s con-
jecture was proven [2], [10].

In the 1-D case, projective transformations are simply frac-
tionally linear, and affine are simply linear. Thus, this theorem
means that any group containing all linear transformation is
either the group of all fractionally-linear ones or the group of
all transformations.

III. HOW WIENER’S CONJECTURE HELPS

How this helps: general idea. Fuzzy degrees are not uniquely
determined: different elicitation techniques lead, in general,
to different values. Sometimes, different scales are related by
a linear transformation, sometimes by a non-linear one. In
practice, we want a description with finitely many parameters,
i.e., we want a finite-dimensional transformation group. Due to
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the above result, all such transformations are fractionally linear.
We show that this can explain why some t-norms, membership
functions, etc., are empirically more successful.

Let us now describe this idea in more detail.

Different assignment procedures are in use. Intelligent
systems use several different procedures for assigning numeric
values that describe uncertainty of the experts’ statements.
The same expert’s degree of uncertainty that he expresses, for
example, by the expression “for sure”, can lead to 0.9 if we
apply one procedure, and to 0.8 if another procedure is used.
Just like 1 foot and 12 inches describe the same length, but
in different scales, we can say that 0.9 and 0.8 represent the
same degree of certainty in two different scales.

Comment. Some scales are different even in the fact that they
use an interval different from [0, 1] to represent uncertainty. For
example, the famous MYCIN system uses the interval [−1, 1]
[1], [9].

In some sense all scales are equal, but some are more
reasonable than others. From a mathematical viewpoint, one
can use any scale, but from the practical viewpoint some of
them will be more reasonable to use, and some of them less
reasonable. We’ll consider only practically reasonable scales,
and we’ll try to formalize what that means.

We must describe transformations between the scales. Since
we are not restricting ourselves to some specific procedure of
assigning a numeric value to uncertainty, we can thus allow
values from different scales. If we want to combine them, we
must be able to transform them all to one scale. So we must be
able to describe the transformations between reasonable scales
(“rescalings”).

How to describe transformations between reasonable
scales. The class F of reasonable transformations of degrees
of uncertainty must satisfy the following properties:

First, if a function x → f(x) is a reasonable transformation
from a scale A to some scale B, and a function y → g(y)
is a reasonable transformation from B into some other scale
C, then it is reasonable to demand that the transformation
x → g(f(x)) from A to C is also a reasonable transformation.
In other words, the class F of all reasonable transformations
must be closed under composition.

Second, if x → f(x) is a reasonable transformation from
a scale A to scale B, then the inverse function is a reasonable
transformation from B to A.

Comment. Thus, the family F must contain the inverse of every
function that belongs to it, and the composition of every two
functions from F . In mathematical terms, it means that F must
be a transformation group.

Finally, if the description of a rescaling is too long, it is
unnatural to call it reasonable. Therefore, we will assume that
the elements of F can be described by fixing the values of n
parameters (for some small n). In mathematics, the notion of a
group whose elements are continuously depending on finitely
many parameters is formalized as the notion of a (connected)

Lie group. So we conclude that reasonable rescalings form a
connected Lie group.

Examples of reasonable rescaling transformations. In ad-
dition to these general demands, we have some examples of
rescalings that are evidently reasonable; see, e.g., [7].

One of the natural methods to assign a truth value t(S) to
a statement S is to ask several experts and take

t(S) =
N(S)

N
,

where N is the number of all experts asked and N(S) is the
number of those who believe in S. If all the experts believe
in S, then this value is 1 (= 100%), if half of them believe in
S, then t(S) = 0.5 (50%), etc.

Knowledge engineers want the system to include the
knowledge of the entire scientific community, so they ask as
many experts as possible. But asking too many experts leads to
the following negative phenomenon: when the opinion of the
most respected professors, Nobel-prize winners, etc., is known,
some less self-confident experts will not be brave enough to
express their own opinions, so they will either say nothing or
follow the opinion of the majority.

How does their presence influence the resulting uncertainty
value? Let N denote the initial number of experts, N(S) the
number of those of them who believe in S, and M the number
of shy experts added. Initially

t(S) =
N(S)

N
.

After we add M experts who do not answer anything when
asked about S, the number of experts who believe in S is still
N(S), but the total number of experts is bigger (M +N ). So
the new value of the uncertainty ratio is

t′ =
N(S)

N +M
= ct,

where
c

def
=

N

M +N
.

When we add experts who give the same answers as the
majority of N renowned experts, then, for the case when

t(S) >
1

2
, we get N(S)+M experts saying that S is true, so

the new uncertainty value is

t′ =
N(S) +M

N +M
=

N · t(S) +M

N +M
.

If we add M “silent” experts and M ′ “conformists” (who
vote as the majority), then we get a transformation

t → N · t+M ′

N +M +M ′ .

In all these cases the transformation from an old scale t(S)
to a new scale t′ is a linear function t → a · t + b for some
constants a and b; in the most general case

a =
N

N +M +M ′



and

b =
M ′

N +M +M ′ .

Now we are ready to formulate precise definitions.

Definition 1.

• By a rescaling we mean a strictly increasing continu-
ous function f that is defined on an interval [a, b] of
real numbers.

• Suppose that some set F of rescalings satisfies the
following properties is a connected Lie group which
contains, for all non-negative integers N , M , and M ′,
a transformation

t → N · t+M ′

N +M +M ′ .

Then elements of this set F will be called reasonable
transformations.

Proposition 1. Every reasonable transformation f(x) is frac-
tionally linear, i.e., has the form

f(x) =
a · x+ b

c · x+ d

for some real numbers a, b, c, and d.

Proof. One can easily prove that the finite-dimensional group
F contains all linear transformations. According to the theorem
that proves Wiener’s conjecture this means that F coincides
either with the group of all linear transformations, or with the
group of all fractional-linear transformations. In both cases,
all transformations from the set F are fractionally linear. The
proposition is proven.

Normalizations. A special case of a transformation is a so-
called normalization. The idea is as follows. Suppose that we
are interested in the possibility of different alternatives. We
used two methods (or two groups of experts) to estimate the
degree of their possibility and got two results: µ(a) is the result
of the first method, and µ′(a) is the result of the second one.
Since we could have used different procedures of representing
uncertainty to get these two sets of estimates (i.e., different
scales), it makes no sense to compare the values directly. Even
if for some a we have µ(a) > µ′(a), it is still possible that
they represent the same degree of certainty, but converted to
different numbers by different procedures. What is independent
is the ordering of the values.

If µ(a) > µ(b) in some scale, this means that the degree
of belief in a is bigger than the degree of belief in b. So the
choice of the most “probable” alternative a (i.e., the one, for
which the degree µ(a) is the largest) does not depend on what
scale we used. Therefore, in order to compare the two sets of
values we normalize them, i.e., reduce them both to a scale in
which the maximum value max

a∈A
µ(a) (where A is the set of all

alternatives) has some prescribed value (usually 1). Usually,
in such cases, there exists an alternative a, about which we
are absolutely sure that it is impossible in our situation (i.e.,
µ(a) = 0). It is natural to demand that this value 0 should

remain the same after the “normalization” transformation. So
we arrive at the following definition.

Definition 2. By a normalization we mean a reasonable
transformation f(x), for which f(0) = 0.

Proposition 2. Every normalization has the form

f(x) =
k · x

1 + d · x
.

Proof. This follows directly from Proposition 1.

Comment. The most widely used linear normalization f(x) =

k · x – resulting in µ′(x) =
µ(x)

max
y

µ(y)
– is a particular case

of this class of reasonable normalizations.

Selecting membership functions. Suppose that we have a
fuzzy notion like “small”. Then for x = 0, and maybe for
extremely small values of some physical quantity x, we are
sure that it is a small value; for some sufficiently big x we are
absolutely sure that it is not small. However, for intermediate
values x we are uncertain whether x is small or not. The bigger
the value x, the less we are certain that this value is small.
In this case there are two ways to represent our uncertainty:
first, we can use a general tool that translates our uncertainty
into a number (the value of a membership function µ(x)), and
second, we can use this very value x because the bigger the
x, the bigger our uncertainty.

Of course, this is true not for all possible x, but only for
those x that lie in the “gray zone”, between the values that are
definitely small (where µ(x) = 1) and those that are definitely
not small (where µ(x) = 0). So on every such zone we have
two different scales to express uncertainty: x and µ(x), and
therefore the transformation between them (i.e., a function µ)
must be a transformation between two reasonable scales, i.e.,
in our terms, a reasonable transformation.

Since we already know that reasonable transformations are
fractionally linear, we therefore conclude that is reasonable to
restrict ourselves to piecewise fractionally linear membership
functions.

Indeed, triangular and trapezoid memberships functions
and, more generally, piece-wise linear membership functions –
an important particular class of such functions – are the most
widely (and most effectively) used in applications of fuzzy
techniques.

t-norms and t-conorms. When we communicate, we often
do not explicitly pronounce all the assumptions that we make;
these assumptions are implicitly assumed. For example, when
we ask a specialist in energetics about the perspectives of
nuclear and hydro power stations, we implicitly assume that
the present-day physics is correct, although we are quite aware
of the fact that new physical theories can appear that will lead
to new sources of energy.

In view of that there are two ways to ask questions to the
experts:



• either we do not mention this implicit knowledge at
all,

• or we can explicitly tell him that we are interested in
his opinion, and we are not assuming that this implicit
knowledge is true.

Then:

• in the first case, the expert will most likely tell us
his/her opinion in the assumption that the implicit
knowledge is true, while

• in the second case, the expert will try to take into con-
sideration the possibility that some of these implicit
statements can turn out to be false.

For example, when we ask a doctor about the chances that
a patient will quickly recover from a depression, and we know
that he is treated by psychoanalysis, then the doctor may say
something like 90%. This estimate can be different from 100%
not because this doctor knows of some cases when this treat-
ment did not help, but because he/she may have some doubts
in the whole psychoanalysis methodology, and the lacking
10% represent his doubts. If we then ask this same question
differently, stressing that we want to know the doctor’s estimate
of a patient’s chances for recovery irrespective of whether
the treatment that he receives now is appropriate, the doctor
may give a bigger number (for example, 99%), because he/she
knows of no cases when a treatment did not help, either by
really treating the disease, or by a placebo effect.

Thus we have two different procedures to assign truth
values to the same uncertain statement S of the same expert.

• The first procedure, when we do not mention the im-
plicit knowledge B in our question, actually represents
the expert’s degree of belief in S&B.

• The second procedure, when we especially mention to
the expert that we want his estimate of S irrespective
of whether B is true or not, we get the degree of belief
in S itself.

So if in both cases we use numbers to represent the degree
of uncertainty, then for the first procedure we get t1(S) =
t(S&B), and for the second procedure we get t2(S).

The transformation from t2(S) to t1(S) is an evident
example of a transformation between reasonable scales for
representing uncertainty, so it should belong to the class of
reasonable transformations. In fuzzy techniques, we estimate
t(S&B) as f&(t(S), t(B)), where f&(a, b) is an appropriate
“and”-operation (t-norm). Thus, the transformation from t2(S)
to t1(S) takes the form a → f&(a, b), where by b we denoted
t(B). So our conclusion is that this transformation must be
reasonable.

The value t(B) can be arbitrary, therefore we can conclude
that this transformation must be reasonable for every b.

Comment. It is important to take into account that a reasonable
transformation must be strictly monotone, but the transfor-
mation x → f&(x, b) is not necessarily strictly increasing.
For example, a statement S can be so highly unreliable that
although t(S) is positive but small, S&B is absolutely false

(t(S&B) = 0). This is quite possible, but in this case 0 < t(S)
and f&(0, b) = f&(t(S), b) = 0. Another example is when
S is so highly reliable, that our degree of belief in S&B
equals to the degree of belief in B, i.e., t(S) < 1, but
f&(t(S), b) = b = f&(1, b).

So we can demand that a transformation x → f&(x, b)
is reasonable only on the intervals where the value of this
function is different from 0 and b.

So far we considered implicit knowledge that can in princi-
ple turn out to be false (i.e., crudely speaking, the pessimistic
part of the implicit knowledge). But the implicit knowledge can
also include an optimistic part. For example, when we form a
knowledge base about energetics, we have in mind that maybe
scientists will find some ecologically pure and economically
cheap way to use the solar energy. Then every question that we
ask the experts can have two interpretations: either we ask them
whether this or that prediction is true assuming the existing
technological level, or we implicitly admit the possibility of
such an optimistic breakthrough. Here we also have two scales
t1(S) and

t2(S) = t1(S ∨B) = f∨(t(S), t(B)),

where B is this implicit optimistic possibility and f∨(a, b) is
the corresponding “or”-operation (t-conorm). So, we can con-
clude that the function g(x) = f∨(x, b) must be a reasonable
rescaling for all x, for which b < g(x) < 1.

Definition 3.

• We say that an “and”-operation is reasonable if for
every real number b from the interval (0,1) the function
g(x) = f&(x, b) is a reasonable rescaling for all x for
which 0 < f&(x, b) < b.

• We say that an “or”-operation is reasonable if the
function g(x) = f∨(a, b) is a reasonable rescaling for
all x, for which b < f∨(x, b) < 1.

Proposition 3. [5] An “and”-operation is reasonable if and
only if it coincides with one of the following operations:

1) f&(a, b) = min(a, b);

2) f&(a, b) =
a · b

k + (1− k) · (a+ b− a · b)
for some constant k ≥ 0;

3) f&(a, b) = max

(
0,

ℓ · a · b+ (ℓ− 1) · (a+ b− 1)

k + (k − 1) · (a+ b− a · b)

)
for some constants k and ℓ;

4) f&(a, b) = min(a, b) if at least one of the values a, b
is greater than or equal to some fixed constant a&,
else

f&(a, b) = a& · g
(
ã, b̃

)
,

where
ã

def
=

a

a&
, b̃

def
=

b

a&
,

and g(a, b) is equal one of the functions 2), 3).



Proposition 4. [5] An “or”-operation is reasonable if and only
if it coincides with one of the following operations:

1) f∨(a, b) = max(a, b);

2) f∨(a, b) =
a+ b+ (k − 1) · a · b

1 + k · a · b
for some constant k ≥ 0;

3) f∨(a, b) = min

(
a+ b+ k · a · b
1 + ℓ · a · b

, 1

)
for some constants k and ℓ;

4) f∨(a, b) = max(a, b), if one of the values a, b is
smaller or equal than some fixed constant a∨, else

f∨(a, b) = a∨ + (1− a∨) · g
(
ã, b̃

)
,

where
ã

def
=

a− a∨
1− a∨

, b̃
def
=

b− a∨
1− a∨

,

and g(a, b) is equal to one of the functions 2), 3).

Comment. The resulting list of reasonable “and”- and “or”-
operations includes (directly or indirectly) most “and”- and
“or”-operations that were actually used. This list of reasonable
operations includes the original operations of fuzzy logic,
algebraic (probabilistic) operations, bold operations, Hamacher
operations, operations of MYCIN for positive certainty factors
(for negative factors MYCIN uses non-monotonic operations,
so our results are not applicable). These results are also in
good accordance with the experimental results that show that
among associative operations min, max, and algebraic sum
and product are the best fit for human reasoning [3].

In addition to the well known operations we got some
additional ones. Their interpretation is straightforward: Sup-
pose we have many highly unreliable evidences E1, E2,
. . . , En in favor of some hypothesis H . This means that
E1 ∨E2 ∨E3 ∨ ...∨En implies H , and the truth values t(Ei)
are small. For simplicity let’s consider the case when the truth
values t(Ei) are equal to each other: t(Ei) = a for some a
that is much smaller than 1 (denoted a ≪ 1). In this case, the
truth value of H must be greater than or equal to the truth
value of E1 ∨ E2 ∨ E3 ∨ . . . ∨En.

• If we use f∨(a, b) = a+ b−a · b, then for sufficiently
big n, the truth value of H can be arbitrarily big,
which contradicts our intuition (because our confi-
dence in the experimental confirmation is greater than
in case where we have arbitrarily many confirming
guesses).

• If we use f∨(a, b) = max(a, b), then we have an-
other contradiction with intuition according to which
two independent confirmations of some hypothesis
are always better (i.e., formally, f∨(a, b) > a and
f∨(a, b) > b for sufficiently big a, b).

The additional operations help in avoiding both contradictions:
for a, b sufficiently big we have f∨(a, b) greater than both a,
b, and if a is sufficiently small (< a∨) then regardless on how
many confirmations with this truth value we have, the resulting

truth value can never be close to absolute certainty (i.e., to the
value 1).

The same interpretation can be given to the additional
“and”-operation. For example, although physicists understand
that their formulations of physical laws can, in principle, be
wrong, they are sufficiently confident in them, and even when
they make long sequences of arguments, they still believe in
all the results with the same confidence. This means that if a
and b are greater than some crucial value a&, then our degree
of belief in a&b is still greater than a&.

Negation operations. A negation operation can be defined as
a function f¬(x) which extends the usual negation from the
values 0 and 1 to the whole interval [0, 1], i.e., as a function
f¬(x) for which f¬(0) = 1 and f¬(1) = 0.

Negation is also a transformation between reasonable
scales, because we can express our uncertainty in a statement
A either by our degree of belief in t(A), or by our degree of
belief t(¬A) = f¬(t(A)) in its negation ¬A. So the operation
f¬(x) that transforms t(A) into our estimate for t(¬A) is a
reasonable transformation.

We already know that every reasonable transformation is
fractionally-linear. By considering fractionally linear transfor-
mations which satisfy the properties f¬(0) = 1 and f¬(1) = 0,
we conclude that each reasonable negation operation is de-
scribed by a formula

f¬(x) =
1− x

1 + k · x
for some k > −1.

In particular, for k = 0, we get the operation f¬(x) = 1−x
which was originally proposed by Zadeh [14] and experi-
mentally confirmed in [3]. The above more general negation
operations was originally proposed by Sugeno [11], [12]; these
operations are also sometimes a good fit for human reasoning
[12]. So, the above result explains the present choice of
negation operations.

Comment. Similar results explain which defuzzification to use;
see, e.g., [5].

Wiener’s conjecture also predicts which neural techniques
work better. A similar result also explains why sigmoid
activation functions are most successful in neural networks;
see, e.g., [6], [7].
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