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What Is Computable? What Is Feasibly
Computable? A Physicist’s Viewpoint

Vladik Kreinovich and Olga Kosheleva

Abstract In this chapter, we show how the questions of what is computable and
what is feasibly computable can be viewed from the viewpoint of physics: what is
computable within the current physics? what is computable if we assume – as many
physicists do – that no final physical theory is possible? what is computable if we
consider data processing, i.e., computations based on physical inputs? Our physics-
based analysis of these questions leads to some unexpected answers, both positive
and negative. For example, we show that under the no-physical-theory-is-perfect
assumption, almost all problems are feasibly solvable – but not all of them.

1 What Is Computable? What Is Feasibly Computable?
Different Aspects of These Questions

The two main questions of theoretical computer science. One of the main ob-
jectives of theoretical computer science is to answer the following two fundamental
questions:

• The first question is: which tasks are computable in principle?
• Once we learned that a task is, in principle, computable, a natural next ques-

tion is: is this task feasibly computable, i.e., can we perform the corresponding
computations in reasonable time?

These questions are usually considered from the viewpoint of a computer sci-
entist. From the viewpoint of a computer scientist, computation is a solution to a
well-defined task, performed on a well-defined computational devices. As a result,
when formulating and analyzing the above problems, computer scientists usually
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consider well-defined tasks and computations which consist of a sequence of well-
defined elementary steps.

A physicist’s understanding is somewhat different. Computer science is, after
all, an applied discipline. From the practical viewpoint, we need computations to
process data from the real world – so that we will be able to predict the future state
of the world and, in situations when we can control this future state, to come up with
actions that would result in the best possible outcome.

From this viewpoint, we can distinguish between two different types of compu-
tations:

• traditional computations, when we are trying to find a solution to a well-defined
(= mathematical) problem, and

• data processing computations, when we process the data coming from the phys-
ical world.

Similarly, based on what computational devices we can use, we can distinguish
between two possible approaches:

• a “purist” approach, when we are only allowed step-by-step computations on a
well-defined computational device, and

• a pragmatic approach, when, in addition to computations, we can set up physical
models of the analyzed systems, analog computations – whatever helps.

Thus, each of the two fundamental questions – what is computable? what is feasibly
computable? – can be formulated in three different ways. Namely, in addition to
the traditional formulation, when we consider computing well-defined mathematical
tasks on well-defined computers, we can also consider:

• a pragmatic formulation, when, in addition to well-defined computers, we can
use physical processes to help with computations, and, finally

• a data processing formulation when we are interested in processing physical data.

What we do in this chapter. In this chapter, we consider all these three approaches
one by one, and we show that they lead to somewhat different answers to the funda-
mental questions of what is computable and what is feasible computable.

The structure of this chapter is as follow. The pragmatic formulation is discussed
in Sections 2 and 3, and the data processing formulation is discussed in Section 4.

2 Non-Standard Physical Processes Can Help Computations:
Examples Based on Specific Physical Models

Solving NP-complete problems is important. In practice, we often need to find a
solution that satisfies a given set of constraints – or at least check that such a solu-
tion is possible. Once we have a candidate for the solution, we can feasibly check
whether this candidate indeed satisfies all the constraints. In theoretical computer
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science, “feasibly” is usually interpreted as computable in polynomial time, i.e., in
time bounded by a polynomial of the length of the input.

A problem of checking whether a given set of constraints has a solution is called
a problem of the class NP if we can check, in polynomial time, whether a given
candidate is a solution; see, e.g., [26].

Examples of such problems includes checking whether a given graph can be
colored in 3 colors, checking whether a given propositional formula – i.e., formula
of the type

(v1 ∨¬v2 ∨ v3)&(v4 ∨¬v2 ∨¬v5)& . . . ,

is satisfiable, i.e., whether this formula is true by some combination of the proposi-
tional variables vi, etc.

Each problem from the class NP can be algorithmically solved by trying all possi-
ble candidates. For example, we can check whether a graph can be colored by trying
all possible assignments of colors to different vertices of a graph, and we can check
whether a given propositional formula is satisfiable by trying all 2n possible combi-
nations of true-or-false values v1, . . . ,vn. Such exhaustive search algorithms require
computation time like 2n, time that grows exponentially with n. For medium-size in-
puts, e.g., for n ≈ 300, the resulting time is larger than the lifetime of the Universe.
So, these exhaustive search algorithms are not practically feasible.

It is not known whether problems from the class NP can be solved feasibly (i.e.,
in polynomial time): this is a famous open problem P ?

=NP. It is known, however,
that there are problems in the class NP which are NP-complete in the sense that
every problem from the class NP can be reduced to this problem. Reduction means,
in particular, that if we can find a way to efficiently solve one NP-complete problem,
then, by reducing other problems from the class NP to this problem, we can thus
efficiently solve all the problems from the class NP.

So, it is very important to be able to efficiently solve even one NP-complete
problem. (By the way, both above example of NP problems – checking whether a
graph can be colored in 3 colors and whether a propositional formula is satisfiable
– are NP-complete.)

Can the use of non-standard physics speed up the solution of NP-complete
problems? NP-completeness of a problem means, crudely speaking, that the prob-
lem may take an unrealistically long time to solve – at least on computers based
on the usual physical techniques. A natural question is: can the use of non-standard
physics speed up the solution of these problems?

To answer this question, let us start the analysis of the corresponding physics.

Parallelization: a natural idea. If a person faces a task that would take too much
time for him or her working alone – e.g., building a house – this person asks for
help. Similarly, when a problem takes too much time to solve on a single computer,
a natural idea is to have several computers working on this problem in parallel.

Physical limitations to parallelization speed-up. At first glance, potentially, by
dividing the original problem into smaller and smaller pieces and using more and
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more processors to process these pieces, we can speed up the computation as much
as possible.

In reality, however, there are physical limitations on the possible speed-up; see,
e.g., [24]. Indeed, let us assume that we have a parallel algorithm that, for all inputs
of bit length ≤ n, solves the original problem in time Tpar(n).

The user is located at some point in space. The user inputs the problem at this
spatial location, and the user expects the result of the computation to be delivered to
the same spatial location. Each processor that participates in the desired computation
must:

• get this signal (directly or indirectly) from the user’s location, and then
• start some other signals that will eventually reach the user at his or her spatial

location.

So, if a processor is located at distance r from the user, then the signal going from
the user to the processor and back must cover the distance of at least 2r.

According to modern physics, the speed of all communications is limited by the

speed of light c. Thus, the smallest amount of time for this signal transmission is
2r
c

.

If this time exceeds Tpar(n), this means that this processor is unable to contribute to

the computation result. Thus, only processors for which
2r
c
≤ Tpar(n), i.e., for which

r ≤R(n) def
=

1
2
·c ·Tpar(n), contribute to the computation. So, we only need to consider

processors which are located inside the sphere of radius R(n) centered at the user.
How many processors can fit inside this sphere? A physical bound of the number

Nproc(n) of these processors can be obtained if we divide the volume V (R(n)) of the
inside of this sphere by the smallest possible volume ∆V of a processor:

Nproc ≤
V (R(n))

∆V
.

In the Euclidean space, V (R) =
4
3
·π ·R3, so we conclude that

Nproc(n)≤
1

∆V
· 4

3
·π · (R(n))3 =

1
∆V

· 4
3
·π · 1

8
· c3 · (Tpar(n))3,

i.e., that Nproc(n) ≤ const · (Tpar(n))3, where the multiplicative constant does not
depend on the size n of the input.

We can always simulate parallel computations by Npar(n) processors on a sequen-
tial machine: for this, for each original cycle of the parallel machine, we need to em-
ulate how the state of each of Nproc(n) processors change. In this simulation, one step
of the original parallel machine requires Nproc(n) steps of the simulating sequential
machine. Thus, the overall time Tseq(n) of the corresponding sequential machine can
be obtained by multiplying the original parallel time Tpar(n) by the number of pro-
cessors: Tseq(n)≤ Tpar(n) ·Nproc(n). By using the bound Nproc(n)≤ const ·(Tpar(n))3,
we conclude that
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Tseq(n)≤ const · (Tpar(n))4.

So, if a problem is difficult to solve on a sequential machine, and there is a huge
lower bound on Tseq(n), then we can conclude that there is a related lower bound
on the parallel time as well: Tpar(n)≥ const · (Tseq(n))1/4. In particular, if – as most
computer scientists believe – an NP-complete problem cannot be solved faster than
in exponential time Tseq(n) ≥ 2n, then we get similar exponential lower bounds on
the parallel time as well: Tpar(n)≥ ( 4√2)n. This is faster than 2n, but still not feasible.

Important observation: these limitations depend on physics. The above limi-
tations are based on the usual physics, where the space is Euclidean (so that the
volume grows as a cube of the radius), and the speeds of all physical processors are
limited by the speed of light.

However, it is well known that the actual space-time is different from Euclidean,
it is curved; see, e.g., [5]. Also, physicists are seriously considering space-time mod-
els in which it is possible to exceed the speed of light; see, e.g., [29]. This leads to the
possibility of potentially physically realistic situations in which we can solve NP-
complete problems in polynomial time. Let us briefly enumerate such situations.

Case of curved space-time. Already in the historically very first non-Euclidean
geometry – the hyperbolic Lobachevsky space – the volume V (R) of the inside of
the sphere grows exponentially with radius. Thus, in principle, we can fit exponen-
tially many processors within a radius that grows linearly with n. On the resulting
parallel machine, if we ask each processor to check one of 2n Boolean vectors, we
can thus solve the NP-complete propositional satisfiability problem in linear time;
see, e.g., [21, 24]. So, if the proper physical space is hyperbolic, we can solve NP-
complete problems in polynomial time.

Another possible scheme is related to the “almost” black holes [24]. One of the
well-known consequences of general relativity is the existence of the “black hole”
solutions. A black hole is an area from which nothing comes out (in particular, light
cannot escape it, hence it looks black). It is proved that if an object (e.g., a star) is
massive enough, it will eventually be crushed by its own gravitational force and form
a black hole. If the object is smaller, or if it has a significant electric charge, then
it forms an “almost” black hole, i.e., an area from which it is possible but difficult
to escape. If you enter this “almost” black hole, you go into the narrow throat; see,
e.g., [23], Chapters 31 and 44. From the outside, it looks like a small particle. So, a
natural hypothesis (described in Chapter 44 of [23]) is that all charged elementary
particles are actually such “almost” black holes.

Each of these throats is gateway to a different space-time. So, to solve a proposi-
tional satisfiability problem with n variables v1, . . . ,vn, we can pick up two particles
in our world – which are gateways to different worlds – and:

• ask the folks from the first of these worlds to check the propositional satisfiability
of a formula obtained when we plug in vn =“true”, and

• ask the second world to do the same with vn =“false”.
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Participants living in each of these world will thus be given a formula with n− 1
Boolean variables. To check the satisfiability of each of these formulas, they will
repeat the same procedure: find two particles-gateways in their world, and ask the
corresponding creatures to solve a problem with n−2 variables, etc. In n steps, we
reduce the problem to checking a formula with a single variable, and we need n steps
to send the results back. Thus, in linear time, we also get a solution to the propo-
sitional satisfiability problem (because, as one can see, in this world with almost
black holes, the volume V (R) also grows exponentially with the radius R).

Possibility of velocities exceeding speed of light. If we allow processes exceeding
speed of light, then we have acausal processes, i.e., the possibility to go back to
the past [29]. The simplest thing that we can do in this case is to let a slow com-
puter solve the problem for as long as it takes – and then send the result back in
time, so that the user will get it right after he or she requested the solution. More
sophisticated schemes are also possible; see, e.g., [10, 11].

Other possible schemes of using non-standard physics to speed up computa-
tions. To speed up computations, we can also use the fact that, according to relativ-
ity theory, time slows down when one travels at a speed close to speed of light or in
a strong gravitational field (e.g., near the black hole). So, if the whole civilization
starts going around at a speed close to the speed of light and/or moves close to the
black hole, then, by performing computations on stationary planets far away from
the black hole, we get the result much faster – in terms of our time. For example,
if 1 year for us will be 10 years for the outside world, then a problem that takes 10
years to compute will be solved after 1 year of our time.

Other possible schemes include the use of quantum effects, etc.; see, e.g., [1, 28].

3 What If No Final Theory Is Possible?

In the previous section, we analyzed how specific physical phenomena affect com-
putability. In this analysis, we considered several specific physical models, such
as cosmological solutions with wormholes and/or casual anomalies, etc. How-
ever, many physicists believe that no physical theory is perfect, i.e., that no mat-
ter how many observations support a physical theory, inevitably, new observations
will come which will require this theory to be updated. In this section, following
[13, 14, 20, 31], we prove that if such a no-perfect-theory principle is true, then the
use of physical data

• can enhance computations, and
• can drastically speed up the solution of NP-complete problems: namely, we can

feasibly solve almost all instances of each NP-complete problem.
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3.1 No Physical Theory Is Perfect: How to Formalize the Widely
Spread Physicists’ Belief

No physical theory is perfect: a widely spread physicists’ belief. If we prove
that, within a given physical theory, we can speed up the solution to NP-complete
problems, will this answer be fully satisfactory?

So far, in the history of physics, no matter how good a physical theory, no matter
how good its accordance with observations, eventually, new observations appear
which are not fully consistent with the original theory – and thus, a theory needs
to be modified. For example, for several centuries, Newtonian physics seems to
explain all observable facts – until later, quantum (and then relativistic) effects were
discovered which required changes in physical theories.

Because of this history, many physicists believe that every physical theory is
approximate – no matter how sophisticated a theory, no matter how accurate its
current predictions, inevitably new observations will surface which would require a
modification of this theory; see, e.g., [5].

How does this belief affect computations? At first glance, the fact that no theory is
perfect makes the question of possible computation of non-computable sequences
and of possible speed-up rather hopeless: no matter how good results we achieve
within a given physical theory, eventually, this theory will turn out to be, strictly
speaking, false – and thus, our computation or speed-up schemes will not be appli-
cable.

In this section, we show, however, that in spite of this seeming hopelessness, an
important non-standard computations and speed-up results can be deduced simply
from the fact no physical theory is perfect.

How to describe, in precise terms, that no physical theory is perfect: discussion.
The statement that no physical theory is perfect means that no matter what physical
theory we have, eventually there will be observations which violate this theory. To
formalize this statement, we need to formalize what are observations and what is a
theory.

What are observations? Each observation can be represented, in the computer, as
a sequence of 0s and 1s; actually, in many cases, the sensors already produce the
signal in the computer-readable form, as a sequence of 0s and 1s.

An exact description of each experiment can also be described in precise terms,
and thus, it will be represented in a computer as a sequence of 0s and 1s. An experi-
ment should specify how long we wait for the result; in this way, we are guaranteed
that we get the result.

In each experiment, we can specify which bit of the result we are interested in;
for convenience, we can consider producing different bits as different experiments.

Each such experiment is represented as a sequence of 0s and 1s; by appending 1
at the beginning of this sequence, we can view this sequence as a binary expansion
of a natural number i. This natural number will serve as the “code” describing the
experiment. For example, a sequence 001 is transformed into i = 10012 = 910. (We
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need to append 1, because otherwise two different sequences 001 and 01 will be
represented by the same integer).

For natural numbers i which correspond to experiment descriptions, let ωi denote
the bit result of the experiment described by the code i.

Let us also define ωi for natural numbers i which do not correspond to a syn-
tactically correct description of experiments. For example, we can fix a scheme of
an experiment that uses a natural number i as a parameter (e.g., repeating a certain
procedure i times), and define ωi as the result of this scheme.

In these terms, all past and future observations form a (potentially) infinite se-
quence ω = ω1ω2 . . . of 0s and 1s, ωi ∈ {0,1}.

Comment. To make sure that the resulting ph-algorithm is feasible, we need to de-
fine experiment descriptions in which a way that the time needed to complete the
i-th experiment does not exceed a polynomial of log(i). From this viewpoint, an ex-
periment in which there is no explicit time limit should be described as a sequence
of experiments with a cutoff time 1, 2, . . . , t, . . . ; the allocated time can be indicated,
e.g., by adding t special time symbols to the original description of the experiment.

What is a physical theory from the viewpoint of our problem: a set of se-
quences. A physical theory may be very complex, but all we care about is which
sequences of observations ω are consistent with this theory and which are not. In
other words, for our purposes, we can identify a physical theory T with the set of all
sequences ω which are consistent with this theory.

Not every set of sequences corresponds to a physical theory: the set T must
be non-empty and definable. Not every set of sequences comes from a physical
theory. First, a physical theory must have at least one possible sequence of observa-
tions, i.e., the set T must be non-empty.

Second, a theory – and thus, the corresponding set – must be described by a finite
sequence of symbols in an appropriate language. Sets which are uniquely by (finite)
formulas are known as definable. Thus, the set T must be definable.

Since at any moment of time, we only have finitely many observations, the set
T must be closed. Another property of a physical theory comes from the fact that
at any given moment of time, we only have finitely many observations, i.e., we only
observe finitely many bits. From this viewpoint, we say that observations ω1 . . .ωn
are consistent with the theory T if there is a continuing infinite sequence which is
consistent with this theory, i.e., which belongs to the set T .

The only way to check whether an infinite sequence ω = ω1ω2 . . . is consistent
with the theory is to check that for every n, the sequences ω1 . . .ωn are consistent
with the theory T . In other words, we require that for every infinite ω = ω1ω2 . . .,

• if for every n, the sequence ω1 . . .ωn is consistent with the theory T , i.e., if for
every n, there exists a sequence ω(m) ∈ T which has the same first n bits as ω ,
i.e., for which ω(m)

i = ωi for all i = 1, . . . ,n,
• then the sequence ω itself should be consistent with the theory, i.e., this infinite

sequence should also belong to the set T .
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From the mathematical viewpoint, we can say that the sequences ω(m) converge to
ω : ω(m) → ω (or, equivalently, limω(m) = ω), where convergence is understood in
terms of the usual metric on the set of all infinite sequences d(ω,ω ′)

def
= 2−N(ω,ω ′),

where N(ω,ω ′)
def
= max{k : ω1 . . .ωk = ω ′

1 . . .ω ′
k}.

In general, if ω(m) → ω in the sense of this metric, this means that for every n,
there exists an integer ℓ such that for every m ≥ ℓ, we have ω(m)

1 . . .ω(m)
n = ω1 . . .ωn.

Thus, if ω(m) ∈ T for all m, this means that for every n, a finite sequence ω1 . . .ωn
can be a part of an infinite sequence which is consistent with the theory T . In view
of the above, this means that ω ∈ T .

In other words, if ω(m) → ω and ω(m) ∈ T for all m, then ω ∈ T . So, the set T
must contain all the limits of all its sequences. In topological terms, this means that
the set T must be closed.

A physical theory must be different from a fact and hence, the set T must be
nowhere dense. The assumption that we are trying to formalize is that no matter
how many observations we have which confirm a theory, there eventually will be
a new observation which is inconsistent with this theory. In other words, for every
finite sequence ω1 . . .ωm which is consistent with the set T , there exists a contin-
uation of this sequence which does not belong to T . The opposite would be if all
the sequences which start with ω1 . . .ωm belong to T ; in this case, the set T will be
dense in the open set of all the sequences starting with ω1 . . .ωm. Thus, in mathe-
matical terms, the statement that every finite sequence which is consistent with T
has a continuation which is not consistent with T means that the set T is nowhere
dense.

Resulting definition of a theory. By combining the above properties of a set T
which describes a physical theory, we arrive at the following definition.

Definition 3.1. By a physical theory, we mean a non-empty closed nowhere dense
definable set T .

Mathematical comment. To properly define what is definable, we need to have a con-
sistent formal definition of definability. In this paper, we follow a natural definition
from [16, 15, 19, 20, 31] – which is reproduced in the Appendix.

Formalization of the principle that no physical theory is perfect. In terms of the
above notations, the no-perfect-theory principle simply means that the infinite se-
quence ω (describing the actual results of all observations) is not consistent with any
physical theory, i.e., that the sequence ω does not belong to any physical theory T .
Thus, we arrive at the following definition.

Definition 3.2. We say that an infinite binary sequence ω is consistent with the no-
perfect-theory principle if the sequence ω does not belong to any physical theory
(in the sense of Definition 3.1).

Comment. Are there such sequences in the first place? Our answer is yes. Indeed,
by definition, we want a sequence which does not belong to a union of all defin-
able physical theories. Every physical theory is closed nowhere dense set. Every
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definable set is defined by a finite sequence of symbols, so there are no more than
countably many definable theories. Thus, the union of all definable physical theo-
ries is contained in a union of countably many closed nowhere dense sets. Such sets
are knows as meager (or Baire first category); it is known that the set of all infinite
binary sequences is not meager. Thus, there are sequences who do not belong to
the above union – i.e., sequences which are consistent with the no-perfect-theory
principle; see, e.g., [9, 25].

3.2 The Use of Physical Computations Can Enhance
Computations

How to describe general computations. Each computation is a solution to a well-
defined problem. As a result, each bit in the resulting answer satisfies a well-defined
mathematical property. All mathematical properties can be described, e.g., in terms
of Zermelo-Fraenkel theory ZF, the standard formalization of set theory. For each
resulting bit, we can formulate a property P which is true if and only if this bit is
equal to 1. In this sense, each bit in each computation result can be viewed as the
truth value of some statement formulated in ZF. Thus, our general ability to compute
can be described as the ability to (at least partially) compute the sequence of truth
values of all statements from ZF.

All well-defined statements from ZF can be numbered, e.g., in lexicographic
order. Let αn denote the truth value of the n-th ZF statement, and let α =α1 . . .αn . . .
denote the infinite sequence formed by these truth values. In terms of this sequence,
our ability to compute is our ability to compute the sequence α .

Kolmogorov complexity as a way to describe what is easier to compute. We
want to analyze whether the use of physical observations (i.e., of the sequence ω
analyzed in the previous section) can simplify computations. A natural measure of
easiness-to-compute was invented by A. N. Kolmogorov, the founder of modern
probability theory, when he realized that in the traditional probability theory, there
is no formal way to distinguish between:

• finite sequences which come from observing from truly random processes, and
• orderly sequences like 0101 . . .01.

Kolmogorov noticed that an orderly sequence 0101 . . .01 can be computed by a
short program, while the only way to compute a truly random sequence 0101 . . . is
to have a print statement that prints this sequence. He suggested to describe this
differences by introducing what is now known as Kolmogorov complexity K(x) of a
finite sequence x: the shortest length of a program (in some programming language)
which computes the sequence x.

• For an orderly sequence x, the Kolmogorov complexity K(x) is much smaller
than the length len(x) of this sequence: K(x)≪ len(x).

• For a truly random sequence x, we have K(x)≈ len(x); see, e.g., [22].
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The smaller the difference len(x)−K(x), the more we are sure that the sequence x
is truly random.

Relative Kolmogorov complexity as a way to describe when using an auxiliary
sequence simplifies computations. The usual notion of Kolmogorov complexity
provides the complexity of computing x “from scratch”. A similar notion of the
relative Kolmogorov complexity K(x |y) can be used to describe the complexity of
computing x when a (potentially infinite) sequence y is given. This relative complex-
ity is based on programs which are allowed to use y as a subroutine, i.e., programs
which, after generating an integer n, can get the n-th bit yn of the sequence y by
simply calling y. When we compute the length of such programs, we just count the
length of the call, not the length of the auxiliary program which computes yn – just
like when we count the length of a C++ program, we do not count how many steps it
takes to compute, e.g., sin(x), we just count the number of symbols in this function
call. The relative Kolmogorov complexity is then defined as the shortest length of
such a y-using program which computes x.

Clearly, if x and y are unrelated, having access to y does not help in computing
x, so K(x |y) ≈ K(x). On the other hand, if x coincides with y, then the relative
complexity K(x |y) is very small: all we need is a simple for-loop, in which we call
for each bit yi, i = 1, . . . ,n, and print this bit right away.

Resulting reformulation of our question. In terms of relative Kolmogorov com-
plexity, the question of whether observations enhance computations is translated
into checking whether K(α1 . . .αn |ω) ≈ K(α1 . . .αn) (in which case there is no
enhancement) or whether K(α1 . . .αn |ω) ≪ K(α1 . . .αn) (in which case there is a
strong enhancement). The larger the difference K(α1 . . .αn)−K(α1 . . .αn |ω), the
larger the enhancement.

Enhancement is possible. Let us show that under the no-perfect-theory principle,
observations do indeed enhance computations.

Proposition 3.1. Let α be a sequence of truth values of ZF statements, and let ω be
an infinite binary sequence which is consistent with the no-perfect-theory principle.
Then, for every integer C > 0, there exists an integer n for which K(α1 . . .αn |ω)<
K(α1 . . .αn)−C.

Comment. In other words, in principle, we can have an arbitrary large enhancement.

3.3 The Use of Physical Observations Can Help in Solving
NP-Complete Problems

Towards the main result of this section: that the use of physical observations
can help in solving NP-complete problems. In this section, we prove that under
the no-perfect-theory principle, it is possible to drastically speed up the solution of
NP-complete problems.
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How to represent instances of an NP-complete problem. For each NP-complete
problem P , its instances are sequences of symbols. In the computer, each such
sequence is represented as a sequence of 0s and 1s. Thus, as in the previous section,
we can append 1 in front of this sequence and interpret the resulting sequence as a
binary code of a natural number i.

In principle, not all natural numbers i correspond to instances of a problem P;
we will denote the set of all natural numbers which correspond to such instances
by SP .

For each i ∈ SP , the correct answer (true or false) to the i-th instance of the
problem P will be denoted by sP,i.

Easier-to-solve and harder-to-solve NP-complete problems. We will show that
our method works on “harder-to-solve” NP-complete problems, harder-to-solve in
the following sense. By definition, for all NP-complete problems, unless P = NP,
there is no feasible algorithm for solving all its instances. However, for some easier-
to-solve problems, there are feasible algorithms which solve “almost all” instances,
in the sense that for each n, the proportional of instance i ≤ n for which the problem
is solved by this algorithm tends to 1. In this case, while the worst-case complexity
is still exponential, in practice, almost all problems can be feasibly solved.

A more challenging case are harder-to-solve NP-complete problems, for which
no feasible algorithm is known that would solve almost all instances.

In this section, we show that our method works on all NP-complete problems,
both easier-to-solve and harder-to-solve ones.

What we mean by using physical observations in computations. In addition to
performing computations, our computational device can produce a scheme i for an
experiment, and then use the result ωi of this experiment in future computations. In
other words, given an integer i, we can produce ωi.

In precise theory-of-computation terms, the use of physical observations in com-
putations thus means computations that use the sequence ω as an oracle; see,
e.g., [26].

Definition 3.3. By a ph-algorithm A , we mean an algorithm which uses, as an
oracle, a sequence ω which is consistent with the no-perfect-theory principle.

Notation. The result of applying an algorithm A using ω to an input i will be
denoted by A (ω, i).

Definition 3.4. Let P be an NP-complete problem. We say that a feasible ph-
algorithm A solves almost all instances of P if for every ε > 0, and for every
natural number n, there exists an integer N ≥ n for which the proportion of the in-
stances i ≤ N of the problem P which are correctly solved by A is greater than
1− ε:

∀ε > 0∀n∃N
(

N ≥ n&
#{i ≤ N : i ∈ SP &A (ω, i) = sP,i}

#{i ≤ N : i ∈ SP}
> 1− ε

)
.
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Comment. The restriction to sufficiently long inputs N ≥ n makes perfect sense: for
short inputs, NP-completeness is not an issue: we can perform exhaustive search of
all possible bit sequences of length 10, 20, and even 30. The challenge starts when
the length of the input is high.

Proposition 3.2. For every NP-complete problem P , there exists a feasible ph-
algorithm A that solves almost all instances of P .

Comments. In other words, we show that the use of physical observations makes all
NP-complete problems easier-to-solve (in the above-described sense).

It turns out that this result is the best possible, in the sense that the use of physical
observations cannot solve all instances.

Proposition 3.3. If P ̸=NP, then no feasible ph-algorithm A can solve all instances
of P .

Comment. Another possible idea of strengthening Proposition 3.2 is to require that
the property

#{i ≤ N : i ∈ SP &A (ω, i) = sP,i}
#{i ≤ N : i ∈ SP}

> 1− ε

hold not only for infinitely many N, but for all N starting with some N0. It turns out
that in this formulation, the use of physical observation does not help.

Definition 3.5. Let P be an NP-complete problem. Let δ > 0 be a real number. We
say that a feasible ph-algorithm A δ -solves P if

∃N0∀N
(

N ≥ N0 →
#{i ≤ N : i ∈ SP &A (ω, i) = sP,i}

#{i ≤ N : i ∈ SP}
> δ

)
.

Proposition 3.4. For every NP-complete problem P and for every δ > 0, if there
exists a feasible ph-algorithm A that δ -solves P , then there exists a feasible algo-
rithm A ′ (not using physical observations) which also δ -solves P .

4 What If We Take into Account that We Are Only Interested in
Processing Physical Data

Many physical theories accurately predict which events are possible and which are
not, or – in situations where probabilistic (e.g., quantum) effects are important –
predict the probabilities of different possible outcomes. At first glance, it may seem
that this probabilistic information is all we need.

In this section, we show, however, that to adequately describe physicists’ reason-
ing, it is important to also take into account additional physical knowledge – about
what is possible and what is not. We show that, if we limit ourselves to objects
which are physically possible, then many seemingly undecidable problems become
algorithmically decidable.
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How physicists make their conclusions: why probabilities are sometimes not
enough. Modern physics makes many very accurate predictions of different events.
In situations when quantum effects are important and thus, deterministic predic-
tions are not possible, physics predicts probabilities of different events; see, e.g., [5].
There are still many problems where we cannot accurately predict the events and/or
their probabilities, but in many other situations, the accuracy of predictions is truly
amazing.

At first glance, once we know the probabilities, we are done: we can thus predict
the frequencies with which the corresponding events will occur in real life. In many
situations, probabilities are indeed all we need. For example, when we predict that
the probability of a coin falling heads is 1/2, this means that in half of the cases,
the coin will fall heads, in half, tails, and there is no other information that we can
extract from observing the results of an actual coin toss: these results should be
random.

This is true not only for coin tossing, but also for other predictions in which
the predicted probability is “reasonable”, i.e., not too small and not too close to 1.
However, the situation is somewhat different when it comes to events with a very
small probability. Let us give a few simple examples.

According to statistical physics, entropy of a closed system can only increase.
This means, for example, that if we place a cold kettle on a cold stove, it is not
possible that the kettle will start boiling by itself, while the stove will get colder –
although this transfer of energy from the stove to the kettle does not contradict to
the energy conservation law.

How do physicists conclude that this is not possible? They estimate the proba-
bility of such an event and conclude that this probability is extremely small. From
the purely mathematical viewpoint, the fact that this probability is not zero means
that if we wait long enough, then we will still see a kettle boiling on a cold stove.
However, this is not what the physicists claim. What they claim is that the kettle
cannot boil. In other words, they claim that the corresponding event is simply not
possible [3, 4, 5].

Another example is the impossibility of spontaneous human levitation. The fact
that a body has a non-zero temperature means that all the atoms and all the molecules
in the body are randomly oscillating. Again, since all the molecules are going in
random directions, there is a non-zero probability that they will all go into the same
direction and a person will be spontaneously lifted above ground. What the physi-
cists claim is not that such a possibility is rare, they claim is that it is simply not
possible.

Physicists make similar conclusions about all irreversible events. For example, if
we place a gas in one half of the box and leave another half – separated by a door –
empty, then, when we open the door, gas will spread evenly through both halves of
the box. From the purely mathematical viewpoint, it is also possible that, vice versa,
if we start with a gas which is uniformly spread through the box, then at some future
moment of time, all the molecules will concentrate in one half of this box, while the
other half will remain empty: the probability of this event is small but still positive.
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However, what the physicists claim is that such a spontaneous separation is simply
not possible.

Need to go beyond probabilities is in good accordance with common sense. The
impossibility of events with very low probability may sound counter-intuitive, but
it is actually in good accordance with common sense. Suppose that you flip a coin
– which you believe to be fair – several times, and every time it falls heads. If this
happens two, three, even ten times in a row, you may still continue believing that
the coin is fair and that the actual probability of heads is indeed 1/2. However, what
if this happens 30 times in a row? 100 times in a row? Different people may have
different thresholds, but for any person, there is some number after which the person
will be absolutely sure that this coin is not fair.

Let us give another example. In each state lottery, usually, someone wins the
big prize. If the same person wins the big prize two years in a row, one may still
claim that this was a random coincidence. But what if the same person wins three
years in a row? four years in a row? No matter how much you originally believe in
the fairness of the state lottery process, if this continues year after year, eventually,
every person will be convinced that the lottery is rigged.

Events with very small probability are not possible: can we describe this phys-
ical idea in purely probabilistic terms? We have mentioned that both physics and
common sense use a rule that events with very small probability cannot happen.
How can we describe this rule in precise terms?

At first glance, it may seem that we can describe this rule in purely probabilistic
terms: namely, we can set up some threshold small value p0 ≪ 1, and we can claim
that any event with probability ≤ p0 is not possible. However, a simple example of
coin tossing shows that proposal does not work. Indeed, what we want to claim is
that after tossing a coin a large number (N) of times, we cannot have a sequence
HH. . . H of all heads. The probability of this event is 2−N , which, for large N, is
indeed a very small number. So, at first glance, it may seem that if we take p0 ≥ 2−N ,
then we will be able to make the desired conclusion.

But the situation is not so easy. The problem is that any sequence of N heads and
tails – including the actual sequence that we will get after tossing a coin N times –
has the exact same probability 2−N . So, if we require that no event with probability
≤ p0 is possible, we come up with a strange conclusion that no sequence of heads
and tails is possible at all – which makes no sense, since, of course, we can flip the
coin N times and record the results.

Comment. It is worth mentioning that there is a direct relation between this dis-
cussion and the notions of Algorithmic Information Theory, such as algorithmic
randomness and Kolmogorov complexity; see, e.g., [22]. The main difference, how-
ever, is that the notion of algorithmic randomness is based on the assumption that
events with probability 0 cannot occur, while we are trying to describe a more gen-
eral statement: that not only events with zero probability cannot occur, but events
with a sufficiently small positive probability cannot occur either.

Additional information is needed. The above simple example shows that we can-
not separate possible from impossible events by only using the known probabilities
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of different events. Thus, to properly describe physicists’ reasoning (and our com-
mon sense), we need to supplement the probabilistic information with an additional
information about what is possible.

How to describe what is possible. Let U be the set of all theoretically possible
events. We assume that we know the probabilities of different events, i.e., that for
some subsets S ⊆U , we know the probability p(S) that the actual event will be in S.

From all possible events, a physicist select a subset T of all events which are
possible. The main idea that we want to formalize is that if the probability is very
small, then the corresponding event is not possible. What constitutes “very small”
depends on the situation, but it is clear that if we have a definable sequence of
events A1 ⊇ A2 ⊇ . . . ⊃ An ⊇ . . ., with p(An)→ 0, then for some sufficiently large
N, the probability of the corresponding event AN becomes so small that this event is
impossible, i.e., T ∩AN = /0.

This is what we trying to describe for the case of coin tossing: An is the event
when the heads appear in the first n coin tosses; then, p(An) = 2−n → 0.

In general, we arrive at the following formalization:

Definition 4.1. [8] Let U be a set with a probability measure p. We say that a subset
T ⊆ U is a set of possible elements if for every definable sequence An for which
An ⊇ An+1 and p(An)→ 0, there exists N for which T ∩AN = /0.

Need to go beyond probabilities. Sometimes, physicists use similar arguments
even in situations when we do not know the probabilities. For example, physi-
cists often expand a dependence in Taylor series f (x) = a0 + a1 · x+ a2 · x2 + . . .
When x is small, i.e., when |x| ≤ δ for some small δ , they argue that we can
safely ignore quadratic (and higher order) terms in this expansion and assume that
f (x)≈ a0 +a1 · x; see, e.g., [5].

This conclusion is definitely justified if we know the value a2, or, at least, if we
know some a priori bound C on this value. Then, |a2 · x2| ≤ C · δ 2, so when δ is
sufficiently small, this term can indeed be safely ignored. However, physicists make
this conclusion even when we do not know of any a priori bound on a2. Their idea
is that values which are too large are highly improbable.

In this case, we also have a series of events An ⊇ An+1: namely, An is the set
of situations in which |a2| > n. Here, we do not have probabilities, but we know
that ∩An = /0. Thus, no matter what is the (unknown) probability measure p, we
have p(An) → 0. As a result, we can use Definition 4.1 and conclude that for a
sufficiently large N, events from AN are impossible – hence |a2| ≤ N.

Such situations lead to the following alternative definition that can be even when
we do not know probabilities; see, e.g., [6, 7, 8, 15, 16, 17, 18, 19, 20]:

Definition 4.2. Let U be a set. We say that a subset T ⊆ U is a set of possible
elements if for every definable sequence An for which An ⊇ An+1 and ∩An = /0, there
exists N for which T ∩AN = /0.

What we do in this section. In this section, we show that many problems become
algorithmically decidable if restrict ourselves to physically possible objects.
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In general, many problems are not algorithmically decidable. In general, many
computational problems are not algorithmically decidable; see, e.g., [2, 30]. As a
simple example, let us consider the problem of deciding whether two given real
numbers are equal or not.

In this problem, the input consists of two real numbers, and the desired output is
“yes” or “no”, depending on whether these numbers are equal or not.

To describe this problem in precise terms, we need to formulate how exactly we
present the input to a computer. In practice, real numbers come from measurements,
and measurements are never absolutely accurate. In principle, we can measure a
real number x with higher and higher accuracy (if not now, then in the future). For
example, for any integer n, we can measure this number with the accuracy of n
binary digits, i.e., with the accuracy of 2−n. As a result of each such measurement,
we get a rational number rn for which |x − rn| ≤ 2−n. This is exactly the usual
definition of a computable real number: it is a process (maybe algorithmic, maybe
involving measurements) that enables us, given an integer n, to generate a rational
number rn for which |x− rn| ≤ 2−n [2, 30].

Computing with computable real numbers means that, in addition to usual com-
putational steps, we can also generate some n, get the corresponding value rn, and
then use this value is computations.

Some things can be computed this way. For example, if we know computable
real numbers x and y, then their sum z = x+ y is also a computable real number.
Indeed, to compute the 2−n-approximation tn to the sum z, it is sufficient to take the
sum sn = rn+1 + sn+1 of 2−(n+1)-approximations rn+1 and sn+1 to x and y. Indeed,
from |x− rn+1| ≤ 2−(n+1) and |y− sn+1| ≤ 2−(n+1), we can then conclude that

|z− sn|= |(x+ y)− (xn+1 + yn+1)|= |(x− xn+1)+(y− sn+1)| ≤

|x− xn+1|+ |y− sn+1| ≤ 2−(n+1)+2−(n+1) = 2−n.

However, it is not possible to algorithmically check whether the two computable
numbers x and y are equal or not. Indeed, if this was possible, then, e.g., for equal
real numbers x = y = 0 for which rn = sn = 0 for all n, our procedure will return
the answer “yes”. This procedure consists of finitely many steps, thus it can only
ask for finitely many values rn and sn. Let N be the smallest number which is larger
than all the requests n. Then, we can keep the same x, but take instead a different
y′ = 2−N ̸= 0 for which s′1 = . . .= s′N−1 = 0 (so our equality-checking procedure will
not notice the difference), but s′N = s′N+1 = . . . = 2−N . Since our procedure cannot
notice the difference between y and y′, it will still produce the same answer – that
yes, the inputs are equal – while in reality, the new inputs x = 0 and y′ = 2−N ̸= 0
are different.

Similar negative results are known for many other problems [2, 30].

If we restrict ourselves to possible pairs of real numbers, then equality becomes
decidable. Let us show, following [17], that if we restrict ourselves to possible pairs
(x,y), then it is algorithmically possible to check whether x = y or x ̸= y.
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Indeed, the fact that we consider possible pairs of real numbers means that on the
set U = IR× IR of all possible pairs of real numbers, we have a subset T of possible
numbers that satisfied Definition 4.2. In particular, we can consider the following
definable sequence of sets An

def
= {(x,y) : 0 < |x− y| ≤ 2−n}.

One can easily see that An ⊇ An+1 for all n and that ∩An = /0. Thus, by Definition
4.2, there exists a natural number N for which T ∩AN = /0, i.e., for which no element
s ∈ T belongs to the set AN . This, in turn, means that for every pair (x,y) ∈ T , either
|x− y|= 0 (i.e., x = y) or |x− y|> 2−N .

So, to check whether x = y or not, it is sufficient to compute both x and y with
accuracy 2−(N+2), i.e., to compute values rN+2 and sN+2 for which |x− rN+2| ≤
2−(N+2) and |y− sN+2| ≤ 2−(N+2). Then:

• if x = y, then, due to triangle inequality, we have

|rN+1 − sN+2| ≤ |x− rN+2|+ |x− sN+2| ≤ 2−(N+2)+2−(N+2) = 2−(N+1);

• on the other hand, if x ̸= y, then from |x− y|> 2−N , we conclude that

|rN+1 − sN+2| ≥ |x− y|− |x− rN+2|− |y− sN+2|>

2−N − (2−(N+2)+2−(N+2)) = 2−N −2−(N+1) = 2−(N+1).

Thus, by checking whether |rN+1 − sN+2| ≤ 2−(N+1) or whether |rN+1 − sN+2| >
2−(N+1), we can decide whether x = y or x ̸= y.

Here, we compare rational numbers, i.e., ratios of integers, and for rational num-
bers, we can indeed algorithmically tell whether one is smaller or the other one is
smaller.

Towards a general description of similar properties. To generalize the above
result, let us come up with a general description of similar properties [12].

Let us start with reformulating the question of whether x = y in generalizable
terms. Specifically, we would like to describe the corresponding property in terms
of the observable sequences rn and sn describing the real numbers x and y.

The equality between real numbers can indeed be described in these terms. In-
deed, if x = y, then, for every n, we have

|rn − sn| ≤ |rn − x|+ |x− sn| ≤ 2−n +2−n = 2−(n−1).

Vice versa, let us assume that we have two computable real numbers x and y for
which |rn − sn| ≤ 2−(n−1) for all n. In this case, due to |x− rn| ≤ 2−n and |y− sn| ≤
2−n, we have

|x− y| ≤ |x− rn|+ |rn − sn|+ |sn − y| ≤ 2−n +2−(n−1)+2−n = 2−(n−2).

Since this hold for every n, for n → ∞, we get x = y.
Thus, the equality between computable real numbers has the form

∀n(|rn − sn| ≤ 2−(n−1)).
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In general, as shown, e.g., in [27, 30], many properties involving limits, differentia-
bility, etc., can be described in similar terms, namely as an arithmetic formula

Qn1 Qn2 . . .Qnk F(r1, . . . ,rℓ,n1, . . . ,nk), (4.1)

where:

• each Qni is either a universal quantifier ∀ni or an existential quantifier ∃ni,
• r1, . . . ,rℓ are corresponding sequences, and
• the property F is simply a propositional (“and”, “or”, and “not”) combination

of equalities and inequalities between the explicitly computable rational-valued
expressions.

In the above example of checking whether two given real numbers are equal:

• we have two sequences ℓ= 2,
• we only have one quantifier k = 1,
• this quantifier is a universal quantifier Q1 = ∀, and
• the property F has (in these terms) the form |r1(n1)− r2(n1)| ≤ 2−(n1−1).

Let us show that for all such arithmetic expressions, the information on what is
possible and what is not leads to algorithmic decidability.

Proposition 4.1. For every arithmetic formula of type (4.1) and for every set T of
possible tuples r = (r1, . . . ,rℓ), there exists an algorithm that, given a tuple r =
(r1, . . . ,rℓ) ∈ T, checks whether or not the given formula holds for this tuple.

Conclusion. In this section, we have shown that in order to adequately describe
physical reasoning, we need to supplement the usual probabilistic information with
an additional knowledge describing what is physically possible and what is not. We
have also shown that if we restrict ourselves to physically possible objects, then
many problems become algorithmically decidable.

Conclusions

In this chapter, we showed that what is computable and what is feasibly computable
depends:

• on what physical processes we allow, and
• on whether we are interested in:

– general computations, in particular, solving mathematical problems, or
– only processing physical data (in which case inputs must satisfy some physics-

motivated constraints).

Somewhat surprisingly, the possibility to enhance computations comes not only
when we consider specific physical models, but also when we take into account
that, according to many physicists, no physical theory is perfect – i.e., no matter
how well a theory fits the experimental data, it will eventually have to be modified.
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Appendix: Proofs

A precise definition of definability.

Definition A1. Let L be a theory, and let P(x) be a formula from the language of
the theory L , with one free variable x for which the set {x |P(x)} is defined in the
theory L . We will then call the set {x |P(x)} L -definable.

Crudely speaking, a set is L -definable if we can explicitly define it in L . The
set of all real numbers, the set of all solutions of a well-defined equation, every set
that we can describe in mathematical terms: all these sets are L -definable.

This does not mean, however, that every set is L -definable: indeed, every L -
definable set is uniquely determined by formula P(x), i.e., by a text in the language
of set theory. There are only denumerably many words and therefore, there are only
denumerably many L -definable sets. Since, e.g., in a standard model of set theory
ZF, there are more than denumerably many sets of integers, some of them are thus
not L -definable.

Our objective is to be able to make mathematical statements about L -definable
sets. Therefore, in addition to the theory L , we must have a stronger theory M in
which the class of all L -definable sets is a set – and it is a countable set.

Denotation. For every formula F from the theory L , we denote its Gödel number
by ⌊F⌋.

Comment. A Gödel number of a formula is an integer that uniquely determines
this formula. For example, we can define a Gödel number by describing what this
formula will look like in a computer. Specifically, we write this formula in LATEX,
interpret every LATEX symbol as its ASCII code (as computers do), add 1 at the
beginning of the resulting sequence of 0s and 1s, and interpret the resulting binary
sequence as an integer in binary code.

Definition A2. We say that a theory M is stronger than L if it contains all for-
mulas, all axioms, and all deduction rules from L , and also contains a special
predicate def(n,x) such that for every formula P(x) from L with one free variable,
the formula ∀y(def(⌊P(x)⌋,y)↔ P(y)) is provable in M .

The existence of a stronger theory can be easily proven: indeed, for L =ZF, there
exists a stronger theory M . As an example of such a stronger theory, we can simply
take the theory L plus all countably many equivalence formulas as described in
Definition A2 (formulas corresponding to all possible formulas P(x) with one free
variable). This theory clearly contains L and all the desired equivalence formulas,
so all we need to prove is that the resulting theory M is consistent (provided that L
is consistent, of course). Due to compactness principle, it is sufficient to prove that
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for an arbitrary finite set of formulas P1(x), . . . ,Pm(x), the theory L is consistent
with the above reflection-principle-type formulas corresponding to these properties
P1(x), . . . ,Pm(x).

This auxiliary consistency follows from the fact that for such a finite set, we can
take

def(n,y)↔ (n = ⌊P1(x)⌋&P1(y))∨ . . .∨ (n = ⌊Pm(x)⌋&Pm(y)).

This formula is definable in L and satisfies all m equivalence properties. The state-
ment is proven.

Important comments. In the main text, we will assume that a theory M that is
stronger than L has been fixed; proofs will mean proofs in this selected theory M .

An important feature of a stronger theory M is that the notion of an L -definable
set can be expressed within the theory M : a set S is L -definable if and only if

∃n ∈ IN∀y(def(n,y)↔ y ∈ S).

In the paper, when we talk about definability, we will mean this property ex-
pressed in the theory M . So, all the statements involving definability become state-
ments from the theory M itself, not statements from metalanguage.

Proof of Proposition 3.1. Let us fix an integer C. To prove the desired property
for this C, let us prove that the set T of all the sequences which do not satisfy this
property, i.e., for which K(α1 . . .αn |ω) ≥ K(α1 . . .αn)−C for all n, is a physical
theory in the sense of Definition 1. For this, we need to prove that this set T is
non-empty, closed, nowhere dense, and definable. Then, from Definition 2, it will
follow that the sequence ω does not belong to this set and thus, that the conclusion
of Proposition 1 is true.

The set T is clearly non-empty: it contains, e.g., a sequence ω = 00 . . .0 . . . which
does not affect computations. The set T is also clearly definable: we have just de-
fined it.

Let us prove that the set T is closed. For that, let us assume that ω(m) → ω and
ω(m) ∈ T for all m. We then need to prove that ω ∈ T . Indeed, let us fix n, and let us
prove that K(α1 . . .αn |ω) ≥ K(α1 . . .αn)−C. We will prove this by contradiction.
Let us assume that K(α1 . . .αn |ω)< K(α1 . . .αn)−C. This means that there exists
a program p of length len(p)< K(α1 . . .αn)−C which uses ω to compute α1 . . .αn.
This program uses only finitely many bits of ω; let B be the largest index of these
bits. Due to ω(m) → ω , there exists M for which, for all m ≥ M, the first B bits of
ω(m) coincide with the first B bits of the sequence ω . Thus, the same program p will
work exactly the same way – and generate the sequence α1 . . .αn – if we use ω(m)

instead of ω . But since len(p)<K(α1 . . .αn)−C, this would means that the shortest
length K(α1 . . .αn |ω(m)) of all the programs which use ω(m) to compute α1 . . .αn
also satisfies the inequality K(α1 . . .αn |ω(m)) < K(α1 . . .αn)−C. This inequality
contradicts to our assumption that ω(m) ∈ T and thus, that K(α1 . . .αn |ω(m)) ≥
K(α1 . . .αn)−C. The contradiction proves that the set T is indeed closed.

Let us now prove that the set T is nowhere dense, i.e., that for every finite se-
quence ω1 . . .ωm, there exists a continuation ω which does not belong to the set T .
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Indeed, as such a continuation, we can simply take a sequence ω =ω1 . . .ωmα1α2 . . .
obtained by appending α at the end. For this new sequence, computing α1 . . .αn is
straightforward: we just copy the values αi from the corresponding places of the
new sequence ω . Here, the relative Kolmogorov complexity K(α1 . . .αn |ω) is very
small and is, thus, much smaller than the complexity K(α1 . . .αn) which – since ZF
is not decidable – grows fast with n.

The proposition is proven.

Proof of Proposition 3.2.

1◦. As the desired ph-algorithm, we will, given an instance i, simply produce the
result ωi of the i-th experiment. Let us prove, by contradiction, that this algorithm
satisfies the desired property.

2◦. We want to prove that for every ε > 0 and for every n, there exists an integer
N ≥ n for which

#{i ≤ N : i ∈ SP &ωi = sP,i}> (1− ε) ·#{i ≤ N : i ∈ SP}.

The assumption that this property is not satisfied means that for some ε > 0 and for
some integer n, we have

#{i ≤ N : i ∈ SP &ωi = sP,i} ≤ (1− ε) ·#{i ≤ N : i ∈ SP} for all N ≥ n. (3.1)

Let T denote the set of all the sequences x that satisfy the property (3.1), i.e., let

T def
= {x : #{i ≤ N : i ∈ SP &xi = sP,i} ≤ (1−ε) ·#{i ≤ N : i ∈ SP} for all N ≥ n}.

We will prove that this set T is a physical theory in the sense of Definition 3.1.
Then, due to Definition 3.2 and the fact that the sequence ω satisfies the no-

perfect-theory principle, we will be able to conclude that ω ̸∈ T , and thus, that the
property (3.1) is not satisfied for the given sequence ω . This will conclude the proof
by contradiction.

3◦. By definition of a physical theory T , it is a set which is non-empty, closed,
nowhere dense, and definable. Let us prove these four properties one by one.

3.1◦. Non-emptiness comes from the fact that the sequence xi for which xi = ¬sP,i
for i ∈ SP and xi = 0 otherwise clearly belongs to this set: for this sequence, for
every N, we have

#{i ≤ N : i ∈ SP &xi = sP,i}= 0

and thus, the desired property is satisfied.

3.2◦. Let us prove that the set T is closed, i.e., that if we have a family of sequences
x(m) ∈ T for which x(m) → ω , then x ∈ T .

Indeed, let us take any N ̸= n, and let us prove that

#{i ≤ N : i ∈ SP &xi = sP,i} ≤ (1− ε) ·#{i ≤ N : i ∈ SP}
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for this N. Due to x(m) → x, there exists M for which, for all m ≥ M, the first N bits
of x(m) coincide with the first N bits of the sequence x: x(m)

i = ωi for all i ≤ N. Thus,

#{i ≤ N : i ∈ SP &xi = sP,i}= #{i ≤ N : i ∈ SP &x(m)
i = sP,i}.

Since x(m) ∈ T , we have

#{i ≤ N : i ∈ SP &x(m)
i = sP,i} ≤ (1− ε) ·#{i ≤ N : i ∈ SP},

thus
#{i ≤ N : i ∈ SP &xi = sP,i} ≤ (1− ε) ·#{i ≤ N : i ∈ SP}.

So, the set T is indeed closed.

3.3◦. Let us now prove that the set T is nowhere dense, i.e., that for every finite
sequence x1 . . .xm, there exists a continuation x which does not belong to the set T .

Indeed, as such a continuation, we can simply take a sequence

x = x1 . . .xmxm+1xm+2 . . .

where for i > m, we take xi = sP,i if i ∈ SP and xi = 0 otherwise. For this new
sequence, for every N, at most m first instances may lead to results different from
sP,i, so we have

#{i ≤ N : i ∈ SP &xi = sP,i} ≥ #{i ≤ N : i ∈ SP}−m.

When N → ∞, then #{i ≤ N : i ∈ SP}→ ∞, so for sufficiently large N, we have

#{i ≤ N : i ∈ SP}−m > (1− ε) ·#{i ≤ N : i ∈ SP},

thus,
#{i ≤ N : i ∈ SP &xi = sP,i}> (1− ε) ·#{i ≤ N : i ∈ SP},

and we cannot have

#{i ≤ N : i ∈ SP &xi = sP,i} ≤ (1− ε) ·#{i ≤ N : i ∈ SP}.

Therefore, this continuation does not belong to the set T .

3.4◦. Finally, since the formula (3.1) explicitly defines the set T , this set T is clearly
definable.

So, T is a physical theory, hence ω ̸∈ T , and the proposition is proven.

Proof of Proposition 3.3. Let us assume that P̸=NP. We then need to prove that for
every feasible ph-algorithm A , it is not possible to have

#{i ≤ N : i ∈ SP &A (ω, i) = sP,i}= #{i ≤ N : i ∈ SP}

for all natural numbers N.
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To prove this impossibility, let us consider, for each feasible ph-algorithm A , the
set

T (A )
def
= {x : #{i ≤ N : i ∈ SP &A (x, i) = sP,i}= #{i ≤ N : i ∈ SP} for all N}.

Similarly to the proof of Proposition 3.2, we can show that this set T (A ) is closed
and definable.

Let us prove that the set T (A ) is nowhere dense, i.e., that for every finite se-
quence x1 . . .xm, there exists a continuation x which does not belong to the set T (A ).
Indeed, we can simply extend the original finite sequence x1 . . .xm by 0s. In this case,
when the oracle has only finitely many nonzero bits, we can incorporate these bits
into an algorithm and get a feasible non-oracle algorithm A ′ which produces the
same results: A ′(i) = A (x, i) for all i.

Let us prove, by contradiction, that x ̸∈ T (A ). Indeed, if x ∈ T (A ), this would
mean that

#{i ≤ N : i ∈ SP &A ′(i) = sP,i}= #{i ≤ N : i ∈ SP}

for all N. Thus, the feasible non-oracle algorithm A ′ solves all the instances of the
original NP-complete problem P , which contradicts to our assumption that P̸=NP.
This contradiction proves that x ̸∈ T (A ) and thus, the set T (A ) is indeed nowhere
dense.

We have thus proven that the set T (A ) is closed, nowhere dense, and definable.
The only property which is still missing from the definition of a physical theory
(Definition 3.1) is non-emptiness. We do not know whether the set T (A ) is non-
empty or not, but we can prove the desired impossibility in both cases.

If the set T (A ) is non-empty, then this set is a theory in the sense of Definition
1, and thus, since the sequence ω satisfies the no-perfect-theory principle, we have
ω ̸∈ T (A ). This means that the ph-algorithm A is not solving all instances of the
problem P .

If the set T (A ) is empty, this also means that the ph-algorithm A does not solve
all instances of the problem P – no matter what oracle we use.

The proposition is proven.

Proof of Proposition 3.4. Let us assume that no non-oracle feasible algorithm δ -
solves the problem P . We then need to prove that for every feasible ph-algorithm
A , it is not possible to have N0 for which

#{i ≤ N : i ∈ SP &A (ω, i) = sP,i}> δ ·#{i ≤ N : i ∈ SP}

for all natural numbers N ≥ N0.
To prove this impossibility, let us consider, for each feasible ph-algorithm A and

for each natural number N0, the set

T (A ,N0)
def
=

{x : #{i ≤ N : i ∈ SP &A (x, i) = sP,i}> δ ·#{i ≤ N : i ∈ SP} for all N ≥ N0}.
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Similarly to the proof of Proposition 3.2, we can show that this set T (A ,N0) is
closed and definable.

Let us prove that the set T (A ,N0) is nowhere dense, i.e., that for every finite
sequence x1 . . .xm, there exists a continuation x which does not belong to the set
T (A ,N0). Indeed, similarly to the proof of Proposition 3.3, we can extend the orig-
inal finite sequence x1 . . .xm by 0s. In this case, when the oracle has only finitely
many nonzero bits, we can incorporate these bits into an algorithm and get a feasi-
ble non-oracle algorithm A ′ which produces the same results: A ′(i) = A (x, i) for
all i.

Let us prove, by contradiction, that x ̸∈ T (A ,N0). Indeed, if x ∈ T (A ,N0), this
would mean that

#{i ≤ N : i ∈ SP &A ′(i) = sP,i}> δ ·#{i ≤ N : i ∈ SP}

for all N ≥ N0. Thus, the feasible non-oracle algorithm A ′ δ -solves the original
NP-complete problem P , which contradicts to our assumption that no such feasible
non-oracle algorithm is possible. This contradiction proves that x ̸∈ T (A ,N0) and
thus, the set T (A ,N0) is indeed nowhere dense.

We have thus proven that the set T (A ,N0) is closed, nowhere dense, and de-
finable. The only property which is still missing from the definition of a physical
theory (Definition 3.1) is non-emptiness. We do not know whether the set T (A ,N0)
is non-empty or not, but we can prove the desired impossibility in both cases.

For each N0, if the set T (A ,N0) is non-empty, then this set is a theory in the sense
of Definition 3.1, and thus, since the sequence ω satisfies the no-perfect-theory prin-
ciple, we have ω ̸∈ T (A ,N0), i.e.,

#{i≤N : i∈ SP &A (ω, i)= sP,i}≤ δ ·#{i≤N : i∈ SP} for some N ≥N0. (3.2)

If the set T (A ,N0) corresponding to a given N0 is empty, then also ω ̸∈ T (A ,N0),
i.e., we also have the property (3.2).

Since the property (3.2) holds for all N0, this means that the ph-algorithm A does
not δ -solve the problem P .

The proposition is proven.

Proof of Proposition 4.1. If the formula (4.1) had no quantifiers, then we could
simply plug in the corresponding values into this formula and check whether the
corresponding formula holds or not. The problem is with the quantifiers: while we
can easily check whether some property holds for a specific value ni, it is not pos-
sible to directly check whether this property holds for all infinitely many natural
numbers ni = 0,1,2, . . . The situation would be different if we could have a bound
N on possible values of ni, i.e., if the quantifier had the form ∀ni ≤ N or ∃ni ≤ N: in
this case, we can simply test all possible values ni ≤ N.

Let us show that for tuples from the set T , we can indeed have such bounds
on the variables ni. Let us start with a bound on n1. For the variable n1, there are
two possible cases: when Q1 is a universal quantifier and when Q1 is an existential
quantifier. Let us consider these two cases one by one.
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In the first case, the formula (4.1) has the form ∀n1 G(n1), for some expression
G(n1) (with one fewer quantifier). Let us take

An = {r : ∀n1 (n1 ≤ n → G(n1))&¬∀n1 G(n1)}.

One can easily check that An ⊇ An+1 and ∩An = /0. Thus, there exists a natural
number N for which T ∩AN = /0. So, for r ∈ T , if ∀n1 (n1 ≤ N → G(n1)), we cannot
have ¬∀n1 G(n1), so we must have ∀n1 G(n1). Clearly, ∀n1 G(n1) always implies
∀n1 (n1 ≤ N → G(n1)). Thus, for r ∈ T , ∀n1 G(n1) with an unlimited quantifier is
equivalent to a formula ∀n1 (n1 ≤ N → G(n1)) with a bounded quantifier.

In the second case, the formula (4.1) has the form ∃n1 G(n1), for some expression
G (with one fewer quantifier). Let us take

An = {r : ¬∃n1 (n1 ≤ n&G(n1))&∃n1 G(n1)}.

One can easily check that An ⊇ An+1 and ∩An = /0. Thus, there exists a natu-
ral number N for which T ∩ AN = /0. So, for r ∈ T , if ¬∃n1 (n1 ≤ N &G(n1)),
we cannot have ∃n1 G(n1), so we must have ¬∃n1 G(n1). Clearly, ¬∃n1 G(n1) al-
ways implies ¬∃n1 (n1 ≤ N &G(n1)). Thus, for r ∈ T , ¬∃n1 G(n1) is equivalent
to ¬∃n1 (n1 ≤ N &G(n1)). So, by taking negations, we conclude that the orig-
inal formula ∃n1 G(n1) with an unlimited quantifier is equivalent to a formula
∃n1 (n1 ≤ N &G(n1)) with a bounded quantifier.

Now, we have reduced the original formula with k quantifiers to a formula in
which the first quantifier is bounded. This bounded-quantifier formula is equiva-
lent to, correspondingly, G(0)&G(1)& . . . &G(N) or to G(0)∨G(1)∨ . . .∨G(N),
where the corresponding formulas G(n1) have k− 1 quantifiers. So, if we can find
the truth values of each of these (finitely many) formulas G(n1), we could be able
to check the truth value of the original formula (4.1).

For each of these formulas G(n1) with k− 1 quantifiers, we can apply the same
reduction to reduce them to formulas with k− 2 quantifiers, etc., until we get for-
mulas with no quantifiers at all – which can be therefore directly checked.

This reduction proves that it is indeed algorithmically possible to check whether
a given formula (4.1) holds or not for a given tuple r. The proposition is proven.
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Gödel number, 20
geometry

Euclidean, 4
hyperbolic, 5
Lobachevsky, 5

non-Euclidean, 5
graph coloring, 3

hyperbolic geometry, 5
hyperbolic space, 5

irreversible process, 14

Kolmogorov complexity, 10, 15
Kolmorogov complexity

relative, 11

Lobachevsky geometry, 5
Lobachevsky space, 5

meager set, 10

no-perfect-theory principle, 6
non-Euclidean geometry, 5
nowhere dense set, 9
NP, 3
NP-complete, 3, 11

oracle, 12

P ?
=NP, 3

parallelization, 3
physical theory, 8
physics, 2
propositional satisfiability, 3

quantum physics, 6, 13

random sequence, 10
randomness, 10

set theory, 10

29



30 Index

space-time
curved, 5

speed of light, 4
statistical physics, 14

topology, 9

undecidable problems, 17

wormhole, 5

Zermelo-Fraenkel set theory, 10
ZF, 10, 20


	University of Texas at El Paso
	DigitalCommons@UTEP
	6-2015

	What Is Computable? What Is Feasibly Computable? A Physicist's Viewpoint
	Vladik Kreinovich
	Olga Kosheleva
	Recommended Citation


	tmp.1434559638.pdf.rZXFT

