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Abstract. By making use of quantum parallelism, quantum processes
provide parallel modelling for fuzzy connectives and the corresponding
computations of quantum states can be simultaneously performed, based
on the superposition of membership degrees of an element with respect to
the different fuzzy sets. Such description and modelling is mainly focussed
on representable fuzzy Xor connectives and their dual constructions. So,
via quantum computing not only the interpretation based on traditional
quantum circuit is considered, but also the notion of quantum process in
the qGM model is applied, proving an evaluation of a corresponding simu-
lation by considering graphical interfaces of the VPE-qGM programming
environment. The quantum interpretations come from measurement op-
erations performed on the corresponding quantum states.

1 Introduction

Fuzzy logic (FL) and quantum computing (CQ) are relevant research areas con-
solidating the analysis and the search for new solutions for difficult problems
faster than the classical logical approach or conventional computing. Similari-
ties between these areas in the representation and modelling of uncertainty have
been explored in [1],[2], [3], [4] and [5].

The former expresses the uncertainty of human being’s reasoning by making
use of the Fuzzy Sets Theory (FST), as a mathematical model inheriting the
imprecision of natural language and determining the membership degree of an
element in a fuzzy set. Based on such theory, fuzzy techniques will help physicists
and mathematicians to transform their imprecise ideas into new computational
programs [6]. The latter approach models the uncertainty of the real world by
making use of properties (superposition and entanglement) of quantum mechan-
ics, suggesting an improvement in the efficiency regarding complex tasks. Thus,
simulations using classical computers allow the development and validation of
basic quantum algorithms (QAs), anticipating the knowledge related to their
behaviors when executed in a quantum hardware. In this scenario, the VPE-
qGM (Visual Programming Environment for the Quantum Geometric Machine

? This work is supported by the Brazilian funding agencies CNPq (Ed. Universal and
PQ, under the process numbers 448766/2014-0 and 309533/2013-9) and FAPERGS
(Ed. 02/2014 - PqG, under the process number 11/1520-1).
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Model), previously described in [7] and [8], is a quantum simulator that adds the
following advantages: the visual modelling and the parallel or distributed simu-
lation of QAs. Additionally, it is possible to show the application and evolution
of quantum states through integrated graphical interfaces [9].

So, it would be interesting to investigate new methods dealing with quantum
fuzzy applications. Extending previous works in [10] and [11], the aim of this
work is mainly related to: (i) the description via QC of representable fuzzy Xor
connectives and dual constructions, by using the traditional quantum circuits
(qCs); (ii) the modelling of fuzzy X(N)or connectives based on quantum pro-
cesses in the qGM model and corresponding simulation, by considering graphical
interfaces of the VPE-qGM.

The class of exclusive or is actively used in commonsense and expert rea-
soning, justifying a practical need for a fuzzy version. Additionally, the novelty
and interest of the discussion and new results about the fuzzy Xor can also be
applied in computer design and in quantum computing algorithms.

In this context, this paper considers the uncertainty described by such con-
nectives which can be modelled by quantum transformations and related compu-
tations, by quantum states. Thus, it contributes to develop quantum algorithms
representing fuzzy X(N)or operations.

This paper is organized as follows: Sect. 2 presents the fundamental concepts
of fuzzy logic. FSs can be obtained by fuzzy X(N)or operators as presented in
Section 2. Moreover, Section 3 brings the main concepts of QC connected with
FSs resulting from X(N)or-connectives. In Section 4, the approach for describing
FSs using the QC is depicted. Sect. 5 presents the operations on FSs modelled
from quantum transformations, considering the fuzzy X(N)operations. Finally,
conclusions and further studies are discussed in Section 7.

2 Preliminary on Fuzzy Logic

Fuzzy sets (FSs) aim to overcome the limitations when the transitions from
one class to another are carried out smoothly. Properties and operations of FSs
are obtained from the generalization of the classical approach.. A membership
function fA(x) : X → [0, 1] determines the membership degree (MD) of the
element x∈X to the set A, such that 0≤fA(x)≤ 1. Thus, a fuzzy set A related
to a set X 6= ∅ is given by the expression: A = {(x, fA(x)) : x ∈ X}.

A function N : [0, 1] → [0, 1] is a fuzzy negation (FN) when the following
conditions hold:

N1 N(0) = 1 and N(1) = 0;
N2 If x ≤ y then N(x) ≥ N(y), for all x, y ∈ [0, 1];
N3 N(N(x)) = x, for all x ∈ [0, 1].

Fuzzy negations verifying the involutive property in N3 are called strong fuzzy
negations. See the standard negation: NS(x) = 1− x.

When N is a FN, the N -dual function of f : [0, 1]n → [0, 1] is given by

fN (x1, . . . , xn) = N(f(N(x1), . . . , N(xn))). (1)
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If N is involutive, (fN )N = f , that is the N -dual function of fN coincides with
f . In addition, if f = fN then it is clear that f is a self-dual function.

Fuzzy connectives can be represented by aggregation functions. Herein, we
consider triangular norms (t-norms) and triangular conorms (t-conorms).

Definition 1. A triangular (co)norm is an operation (S)T : [0, 1]2 → [0, 1]
such that, for all x, y, z ∈ [0, 1], the following properties hold:
T1: T (x, y) = T (y, x); S1: S(x, y) = S(y, x);
T2: T (T (x, y), z) = T (x, T (y, z)); S2: S(S(x, y), z) = S(x, S(y, z));
T3: if x ≤ z then T (x, y) ≤ T (z, y); S3: if x ≤ z then S(x, y) ≤ S(z, y)
T4: T (x, 0) = 0 and T (x, 1) = x; S4: S(x, 1) = 1 and S(x, 0) = x

Among different definitions of t-norms and t-conorms [12], in this work we
consider the Algebraic Product and Algebraic Sum, respectively given as:

TP (x, y) = x · y; and SP (x, y) = x+ y − x · y, ∀x, y ∈ [0, 1]. (2)

In the following, a fuzzy eXclusive or (Xor) operator E : [0, 1]2 → [0, 1] and its
dual construction, a fuzzy eXclusive Not or (XNor) connective E : [0, 1]2 → [0, 1]
are both defined via axiomatization:

A function E(D) : [0, 1]2 → [0, 1] is a fuzzy exclusive (not) or, called
X(N)or, if it satisfies the following properties, for all x, y ∈ [0, 1]:

E0: E(1, 1) = E(0, 0) = 0 and E(1, 0) = 1; D0: D(1, 1) = D(0, 0)=1 and D(0, 1)=0;
E1: E(x, y) = E(y, x); D1: D(x, y) = D(y, x);
E2: If x ≤ y then E(0, x) ≤ E(0, y); D2: If x ≤ y then D(0, x) ≥ D(0, y);

If x ≤ y then E(1, x) ≥ E(1, y). If x ≤ y then D(1, x) ≤ D(y, 1).
This paper considers the class of representable fuzzy X(N)or connectives

meaning that they can be obtained by compositions performed over aggregation
functions (t-norms and t-conorms) and fuzzy negations. In particular, a fuzzy
X(N)or operator obtained via a defining standard over the Algebraic Product
and Algebraic Sum, respectively given by Eq.(2)a and Eq.(2)b, together with
standard fuzzy negation is defined in the following.

2.1 Operations over Fuzzy Sets

Let A,B be FSs based on the complement, intersection and union operations.

Definition 2. Let N be a fuzzy negation. The complement of A with respect
to X , is a FS A′ = {(x, fA′) : x ∈ X}, whose MF fA′ : X → [0, 1] is given by
fA′(x) = N(fA(x)), for all x ∈ X .

So, a membership degree related to A′ is given by the following expression
fA′(x) = NS(fA(x)) = 1− fA(x), for all x ∈ X .

Definition 3. Let T, S : [0, 1]2 → [0, 1] be a t-norm and a t-conorm. The in-
tersection and union between the FSs A and B, both defined with respect to
X, results in the corresponding fuzzy sets

A ∩B = {(x, fA∩B(x)) : x ∈ X and fA∩B(x) = T (fA(x), fB(x))}; (3)

A ∪B = {(x, fA∪B(x)) : x ∈ X and fA∪B(x) = S(fA(x), fB(x))}. (4)
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In this paper, the MFs related to an intersection A ∩B and an union A ∪B
are obtained by applying the product t-norm, the algebraic sum and standard
negation to the MDs fA(x) and fB(x) respectively given as:

fA∩B(x) = fA(x) · fB(x),∀x ∈ X ; (5)

fA∪B(x) = fA(x) + fB(x)− fA(x) · fB(x),∀x ∈ X . (6)

3 FSs Resulting from X(N)or-connectives

The representable class of fuzzy Xor connective obtained by aggregation func-
tions T, S and a FN N , denoted as ES,T,N : [0, 1]2 → [0, 1], is based on the
classical logical equivalence α© β ≡ (¬α ∧ β) ∨ ¬(α ∧ ¬β).

Definition 4. Let S be a t-conorm, T be a t-norm and N be a strong FN,
A and B be FS related to X , a non- empty set. The fuzzy X(N)or operator
ES,T,N (DT,S,N ) : [0, 1]2 → [0, 1] results in a FS

A©B = {(x, fA©B(x)) : x ∈ X} and A�B = {(x, fA�B(x)) : x ∈ X}

whose corresponding membership function fA©B , (fA�B) : χ→ [0, 1] is given as

fA©B(x) = E(fA(x), fB(x)) and fA�B(x) = D(fA(x), fB(x)). (7)

Representable fuzzy X(N)ors obtained by compositions performed on the
product t-norm TP , the probabilistic sum SP and the standard negation NS are
expressed as:

E⊕ ≡ ESP ,TP ,NS
D� ≡ DTP ,SP ,NS

Proposition 1. Let SP be the probabilistic sum t-conorm, TP be the produc t-
norm, NS be the standard fuzzy negation and the related E⊕ (D�) fuzzy X(N)or.
Consider A and B as FS related to X 6= ∅.

(i) The FS obtained by the fuzzy Xor operator E⊕, denoted by A⊕B and
whose MF fA⊕B : χ→ [0, 1] provides, for all x ∈ χ, a MD given as

fA⊕B(x)=(fB(x) + fA(x)− fA(x)fB(x))(1− fA(x)fB(x))− 2fA(x)fB(x). (8)

(ii) The FS obtained by the fuzzy XNor operator E�, denoted by A � B
and whose MF fA�B : χ→ [0, 1] provides, for all x ∈ χ, a MD given as

fA�B(x) = 1− (1− fA(x)fB(x))(fA(x) + fB(x)− fA(x)fB(x)). (9)

In a dual construction, we have the following:

Definition 5. Let S be a t-conorm, T be a t-norm and N be a strong fuzzy
negation, A and B be FS related to X . The dual construction of a fuzzy X(N)or
operator E(D) : [0, 1]2 → [0, 1] results in a FS

(A©B)N = {(x, f(A©B)N
(x)) : x ∈ X} and (A�B)N = {(x, f(A�B)N

(x)) : x ∈ X}.
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Proposition 2. The MFs (fA©B)N , (fA�B)N :χ→ [0, 1] in Def. 5 are given as

(fA©B)N(x)=(fA©NB)(x)=fA�B(x); (fA�B)N(x)=(fA�NB)(x)=fA©B(x).(10)

Proof. Based on Eq. (7) in Definition 4, for all x ∈ χ, it holds that:

(fA©B)N (x) = N (E(N(fA(x)), N(fB(x)))) = D(fA(x), fB(x)) = fA�B(x);

(fA�B)N (x) = N (D(N(fA(x)), N(fB(x)))) = E(fA(x), fB(x)) = fA©B(x).

Theorem 1. Let (E⊕,D�) be a pair of mutual NS-dual fuzzy Xor-connectives.
Then (fA⊕B , fA�B) is also a pair of mutual NS-dual MFs.

Proof. It follows from Eq. (10) and the expressions below:

(fA⊕B)NS
(x) = E⊕NS

(fA(x), fB(x)) by Eq. (7)

= NS (E⊕(NS(fA(x)), NS(fB(x))) by Eq. (1)

= 1− ((1− fB(x) + 1− fA(x)− (1− fA(x))(1− fB(x)))

(1− (1− fA(x))(1− fB(x)))− 2(1− fA(x))(1− fB(x))by Eq.(8)

= 1−(1−fA(x)fB(x))(fA(x)+fB(x)−fA(x)fB(x))=fA�B(x)by Eq. (9).

4 Modelling Fuzzy Sets through Quantum Computing

In QC, the qubit is the basic information unit, being the simplest quantum sys-
tem, defined by a unitary and bi-dimensional state vector. Qubits are generally
described, in Dirac’s notation [13], by |ψ〉 = α|0〉+ β|1〉.

The coefficients α and β are complex numbers for the amplitudes of the
corresponding states in the computational basis (state space), respecting the
condition |α|2 + |β|2 = 1, which guarantees the unitarity of the state vectors of
the quantum system, represented by (α, β)t.

The state space of a quantum system with multiple qubits is obtained by
the tensor product of the space states of its subsystems. Considering a quantum
system with two qubits, |ψ〉 = α|0〉+ β|1〉 and |ϕ〉 = γ|0〉+ δ|1〉, the state space
comprehends the tensor product |ψ〉⊗|ϕ〉 = α·γ|00〉+α·δ|01〉+β ·γ|10〉+β ·δ|11〉.

The state transition of a quantum system is performed by controlled and
unitary transformations associated with orthogonal matrices of order 2N , with
N being the number of qubits within the system, preserving norms, and thus,
probability amplitudes.

For instance, the definition of the Pauly X transformation and its application
over a one-dimensional and two-dimensional quantum systems are presented in
the Fig. 1. Furthermore, a Toffoli transformation is also shown in order to de-
scribe a controlled operation for a 3 qubits system. In this case, the NOT op-
erator (Pauly X ) is applied to the qubit |σ〉 when the current states of the first
two qubits |ψ〉 and |ϕ〉 are both |1〉.

In order to obtain information from a quantum system, it is necessary to
apply measurement operators, defined by a set of linear operators Mm, called
projections. The index M refers to the possible measurement results. If the state
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Fig. 1. Examples of quantum transformations

of a quantum system is |ψ〉 immediately before the measurement, the probability

of an outcome occurrence is given by p(|ψ〉) = Mm|ψ〉√
〈ψ|M†mMm|ψ〉

.

When measuring a qubit |ψ〉 with α, β 6= 0, the probability of observing |0〉
and |1〉 are, respectively, given by the following expressions:

p(0)=〈φ|M†0M0|φ〉=〈φ|M0|φ〉=|α|2 and p(1)=〈φ|M†1M1|φ〉=〈φ|M1|φ〉=|β|2.

After the measuring process, the quantum state |ψ〉 has |α|2 as the probability
to be in the state |0〉 and |β|2 as the probability to be in the state |1〉.

4.1 Describing Fuzzy Sets through Quantum States

The description of FSs from the QC viewpoint considers a FS A, which is given
by the membership function fA(x). Without losing generality, let X be a finite
subset with cardinality N (|X | = N). Thus, the definitions can be extended
to infinite sets, by considering a quantum computer with an infinite quantum
register [13].

As stated in [14], consider X 6= ∅, |X | = N , i ∈ NN = {1, 2, ..., N} and a
membership function, fA : X → [0, 1]. A classical fuzzy state(CFS) of N-
qubits is an N -dimensional quantum state, given by

|sf 〉 =
⊗

1≤i≤N

[
√

1− fA(xi)|0〉+
√

fA(xi)|1〉]. (11)

When f(1) = a, f(2) = b and a, b ∈]0, 1[, superpositions of quantum states
corresponding to FSs are obtained and expressed as

|sf 〉=(
√
a|1〉+

√
1− a|0〉)⊗ (

√
b|1〉+

√
1− b|0〉)

=
√

(1− a)(1− b)|00〉+
√

b(1− a)|01〉+
√

a(1− b)|10〉+
√
ab|11〉. (12)

As it can be seen, the application of a membership function f to each element
in the image-set f [X ] defines a quantum state. In other words, a canonical or-
thonormal basis in ⊗NC denotes a classical quantum register of N -qubits. Thus,
one can describe the classical state of the register |1100 . . . 0〉 of N qubits when
f(1) = f(2) = 1 and f(i) = 0 when i ∈ {NN − {1, 2}}.

The generalized expression, described in [14], states a CFS of N−qubits as:

|sf 〉=(1− f(1))
1
2 (1− f(2))

1
2 . . . (1− f(n))

1
2 |00 . . . 00〉+

f(1)
1
2 (1− f(2))

1
2 . . . (1− f(n))

1
2 |10 . . . 00〉+ f(1)

1
2 f(2)

1
2 . . . f(n)

1
2 |11 . . . 11〉.(13)
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From the perspective of QC, a FS is a superposition of crisp sets. Each |sf 〉 is
a quantum state described as a superposition of crisp sets and generated by the
tensor product of non-entangled quantum registers [13].

A linear combination of membership functions representing the fuzzy classical
states formalizes the notion of a fuzzy quantum state [14]. So, a quantum fuzzy
set (QFS) is conceived as quantum superposition of FSs, simultaneously.

In Eq (13), a quantum state |sf 〉 in C2N is characterized as a N-dimensional

orthonormal set in C2N , see more details in [13] and [15].

Definition 6. Consider fi : X → [0, 1], i ∈ {1, ..., k}, as a collection of MFs
generating fuzzy subsets Ai and {|sf1〉, . . . , |sfk〉} ⊆ [CFS], such that their com-
ponents are two by two orthonormal vectors.When {c1, . . . , ck} ⊆ C, the linear
combination |s〉 = c1|sf1〉+ . . .+ ck|sfk〉 defines a quantum FS (QFS).

By Def. 6, an N -dimensional quantum fuzzy state can be entangled or not,
depending on the family of classical fuzzy states.

5 FS Operations from Quantum Transformations

According to [14], FSs can be obtained by quantum superposition of CFSs asso-
ciated with a quantum state. Additionally, interpretations for fuzzy operations
such as complement, intersection and union are obtained from the NOT , AND
and OR quantum transformations.

Let f, g : X → [0, 1] be MFs related to FSs A and B. For x ∈ X , the
corresponding pair (|sf(x)〉, |sg(x)〉) of CFSs is given as:

|Sf (x)〉=
√
f(x)|1〉+

√
1− f(x)|0〉 and |Sg(x)〉=

√
g(x)|1〉+

√
1− g(x)|0〉.(14)

In order to simplify the paper notation, the MD defined by fA(x), which is
related to an element x ∈ X in the FS A, will be denoted by fA.

5.1 Fuzzy Complement Operator

The complement of a FS is performed by the standard negation, which is
obtained by the NOT operator, defined as

NOT (|SfA〉)=
√

1− fA|1〉+
√

fA|0〉 (15)

The complement operatorNOTN can be applied to the state |sf 〉 = ⊗1≤i≤N |sfi〉,
resulting in an N -dimensional quantum superposition of 1-qubit states, described

as C2N in the computational basis, represented by NOTN |sf 〉 and expressed as

NOTN (|SfA〉) = NOT (⊗1≤i≤N (fA(i)
1
2 |1〉(1− fA(i))

1
2 |0〉)) (16)

Now, Eqs. (17) and (18) describe other applications related to the NOT trans-
formation used to describe other fuzzy Xor operators, which act on the 2nd e
3rd-qubits of a quantum system, respectively:

NOT2(|Sf1〉|sf2〉) = |Sf1〉 ⊗NOT |sf2〉 (17)

NOT2,3(|Sf1〉|Sf2〉|sf3〉) = |sf1〉⊗NOT |sf2〉⊗NOT |sf3〉. (18)
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5.2 Modelling of Fuzzy Intersection and Union Operators

The fuzzy intersection operator is modelled by the AND operator expressed
through the Toffoli quantum transformation as

AND(|sfi〉, |sgi〉) = T (|sfi〉, |sgi〉, |0〉). (19)

So, we obtain the quantum state |S2〉 given by the following expression:

|S2〉 =
√

fAfB |111〉+
√

fA(1−fB)|100〉+
√

(1−fA)fB |010〉+
√

(1−fA)(1−fB)|000〉.(20)

Thus, a measurement performed over the third qubit (|1〉) in the quantum state
expressed by Eq. (20), provides the following output:

•|Sf0〉 = |111〉, with probability p(1) = fA · fB .

Then, for all x ∈ X,let fA(x) and fB(x) be the MD of x ∈ X in the FS defined
by MF fA(x) : X → U and gA(x) : X → U , respectively. Then, fA(x) · fB(x)
indicates the MD of x in the intersection of such FSs A,B. Analogously, a
measurement of third qubit (|0〉) in Eq. (20), returns an output state given as:

•|Sf1〉=
1√

(1−fA)fB
(
√

fA(1−fB)|100〉+
√

(1−fA)fB |010〉+
√

(1−fA)(1−fB)|000〉),

with probability p(0) = 1 − fA(x) · fB(x). In this case, an expression of the
complement of the intersection between FSs A and B is given by 1 − p(0) =
fA(x) · fB(x). This probability indicates the non-MD of x is in the FS A ∩ B.
We also conclude that, by Eq. (20), it corresponds to the standard negation of
product t-norm [12].

Let |sfi〉 and |sgi〉 be quantum states given by Eqs. (14)a and (14)b, respec-
tively. The union of FSs is modelled by the OR operator as the complement
of AND operator, and therefore it is given as:

OR(|Sf 〉, |Sg〉)=NOT 3(T (NOT |Sf 〉,NOT |Sg〉, |0〉)). (21)

In the following, by applying the NOT 3 and Toffoli operators we have that:

|S4〉 =
√

(1−fA)(1−fB)|000〉+
√

(1−fA)fB |011〉+
√

fA(1−fB)|101〉+
√

fAfB |111〉.(22)

Observe that, a measure performed on third qubit (|1〉) of quantum state in
Eq. (22) results in the final state:

•|Sf1〉 =
1√

fB(1− fA) + fA)
(
√

(1−fA)fB |011〉+
√

fA(1−fB)|101〉+
√

fAfB |111〉),

with corresponding probability p = fA + fB − fA · fB of xi ∈ X is in both
FSs A e B. The OR operator, expressed by Eq. (22), is therefore defined by the
t-conorm product [12]. Additionally, a measure also performed in the third qubit
(but related to state |0〉) returns

•|Sf0〉 = |000〉, with probability p(0) = (1− fA) · (1− fB),

indicating that x ∈ X does not belong to A ∪B (neither A nor B).
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6 Modelling and Simulation of a Fuzzy Xor ConnectiveE⊕

A representable fuzzy X(N)or can be obtained by a composition of quantum
operations (NOT, T,CNOT, . . .) and other controlled ones (AND, OR, NOTN )
previously discussed in Sections 5.1 and 5.2. Extending this approach, this section
introduces the expressions modelling the quantum operators of fuzzy X(N)or and
simulating them in the VPE-qGM based on Eqs. (23)a and (23)b, respectively
given as

|Sf 〉 =

√
2

2
|1〉+

√
2

2
|0〉 and |Sg〉 =

√
3

3
|1〉+

√
6

3
|0〉. (23)

Let |sfi〉 and |sgi〉 be quantum states in Eqs. (14)a and (14)b, respectively.
The fuzzy Xor E⊕ is modelled by the quantum operator XOR⊕ given by:

XOR⊕(|Sf 〉, |Sg〉) = OR(AND(NOT |Sf 〉, |Sg〉), AND(|Sf 〉, NOT |Sg〉)) (24)

By applying the NOT6 and AND operators, we obtain the quantum state

|S5〉 = NOT7(T3,6,7(NOT3(T1,2,3(|Sf 〉, |Sg〉, |0〉), NOT6(T4,5,6(NOT |Sf 〉, NOT |Sg〉, |0〉), |0〉))

The initial state |s0〉 = (|fA〉 ⊗ |fB〉 ⊗ |0〉)2 ⊗ |0〉 graphically presented in the
quantum circuit of Figure 2(a) is extended in Eq. (25) below,

|s0〉 = (((
√

1− fA|0〉+
√

fA|1〉)⊗ (
√

1− fB |0〉+
√

fB |1〉)⊗ |0〉))⊗
((
√

1− fA|0〉+
√

fA|1〉)⊗ (
√

1− fB |0〉+
√

fB |1〉)⊗ |0〉)))⊗ |0〉. (25)

Thus, according with column 5 related to Table 1, presenting the non zero
coefficients of quantum states in a temporal evolution of computations related
to the fuzzy Xor E⊕, we obtain the quantum state in the following Eq.(26):

|S5〉E⊕ =
√

fAfB(1− fA)(1− fB)|0010010〉+ (1− fB)
√

fA(1− fA)|0010110〉+

fA
√

fB(1− fB)|0011010〉+ fB
√

fA(1− fA)|0110010〉+√
fAfB(1− fA)(1− fB)|0110110〉+ fAfB |0111010〉+

(1− fA)
√

fB(1− fB)|1010010〉+ (1− fA)(1− fB)|1010110〉+√
fAfB(1− fA)(1− fB)|1011010〉+ fA(1− fB)|0011101〉+

fA
√

fB(1− fB)|0110001〉+ (1− fB)
√

fA(1− fA)|1011101〉+

fB(1− fA)|1100011〉+ (1− fA)
√

fB(1− fB)|1100111〉+

fB
√

fA(1− fA)|1101011〉+
√

fAfB(1− fA)(1− fB)|1101101〉 (26)

Additionally, a measure performed on the 7th qubit of quantum state de-
scribed by Eq. (26) results in the final state:

•|S
′
f0〉 =

1√
fA + fB − 3fAfB + fAf2

B + f2
AfB − f2

Af
2
B

(fA(1− fB)|0011101〉+

fA
√

fB(1− fB)|0110001〉+ (1− fB)
√

fA(1− fA)|1011101〉+ fB(1− fA)|1100011〉+

(1− fA)
√

fB(1− fB)|1100111〉+ fB
√

fA(1− fA)|1101011〉+√
fA(1− fA)(1− fB)|1101101〉).
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Table 1. Temporal evolution related to computation of the fuzzy Xor E⊕

T0 T1 T2 T3 T4 T5

(1− fA)(1− fB) 0000000 1000100 1000100 1010110 1010111 1010110

(1− fA)
√

fB(1− fB) 0000100 1000000 1000000 1010010 1010011 1010010

(1− fB)
√

fA(1− fA) 0001000 1001100 1001110 1011100 1011100 1011101√
fAfB(1− fA)(1− fB) 0001100 1001000 1001000 1011010 1011011 1011010

(1− fA)
√

fB(1− fB) 0100000 1100100 1110100 1100110 1100110 1100111
fB(1− fA) 0100100 1100000 1110000 1100010 1100010 1100011√

fAfB(1− fA)(1− fB) 0101000 1101100 1111110 1101100 1101100 1101101

fB
√

fA(1− fA) 0101100 1101000 1111000 1101010 1101010 1101011

(1− fB)
√

fA(1− fA) 1000000 0000100 0000100 0010110 0010111 0010110√
fAfB(1− fA)(1− fB) 1000100 0000000 0000000 0010010 0010011 0010010

fA(1− fB) 1001000 0001100 0001110 0011100 0011100 0011101

fA
√

fB(1− fB) 1001100 0001000 0001000 0011010 0011011 0011010√
fAfB(1− fA)(1− fB) 1100000 0100100 0100100 0110110 0110111 0110110

fB
√

fA(1− fA) 1100100 0100000 0100000 0110010 0110011 0110010

fA
√

fB(1− fB) 1101000 0101100 0101110 0110000 0110000 0110001
fAfB 1101100 0101000 0101000 0111010 0111011 0111010

with corresponding probability p(1) = fA + fB − 3fAfB + fAf
2
B + f2AfB − f2Af2B

indicating the MD of an element x ∈ X in the FS A⊕B obtained by applying
the fuzzy Xor connective E⊕ and taking fA(x), fB(x) as the arguments of the
related MF. So, a measure also performed in the 7th qubit (but related to state
|0〉) returns

•|Sf1〉 =
1√

1− (fA + fB − 3fAfB + fAf2
B + f2

AfB − f2
Af

2
B)

(
√

fAfB(1− fA)(1− fB)|0010010〉

+(1− fB)
√

fA(1− fA)|0010110〉+ fA
√

fB(1− fB)|0011010〉+

fB
√

fA(1− fA)|0110010〉+
√

fAfB(1− fA)(1− fB)|0110110〉+ fAfB |0111010〉+

(1− fA)
√

fB(1− fB)|1010010〉+ (1− fA)(1− fB)|1010110〉+√
fAfB(1− fA)(1− fB)|1011010〉),

with p(0) = 1− (fA + fB − 3fAfB + fAf
2
B + f2AfB − f2Af2B).

See in Figure 2(b) that the simulation in VPE-qGM is consistent with Eq. (26)
by taking initial states of Eq. (23)a and Eq. (23)b. After a measurement, one of
the following states is reached:

– |S′5〉 =
√
324√
144

( 1
3 |0011101〉+

√
18
18 |0110001〉+ 1

9 |1011101〉+ 1
6 |1100011〉+

√
18
18 |1100111〉+

1
6 |1101011〉+

√
18
18 |1101101〉), with probability p(1) = 44%

– |S′′5 〉 =
√
324√
180

(
√
18
18 |0010010〉 + 1

3 |0010110〉 +
√
18
18 |0011010〉 + 1

6 |0110010〉 +
√
18
18 |0110110〉 + 1

6 |0111010〉 +
√
18
18 |1010010〉 + 1

3 |1010110〉 +
√
18
18 |1011010〉),

with probability p(0) = 56%
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(a) Xor E⊕ (b) VPE E⊕

Fig. 2. Modelling and simulating fuzzy Xor E⊕ operator in the VPE-qGM

Analogously, in order to model and simulate the fuzzy XNor D�, consider
the quantum operator XNOR� given as:

XNOR�(|sfi〉, |sgi〉) = AND(OR(NOT |sfi〉, |sgi〉), OR(|sfi〉, NOT |sgi〉)) (27)

Therefore, based on the AND, OR and NOT transformation, we obtain that

|S5〉 = T3,6,7(NOT3(T1,2,3(|sfi〉, NOT |sgi〉, |0〉)), NOT6(T4,5,6(NOT |sfi〉, |sgi〉, |0〉)), |0〉)

Analogously, it can be developed for simulation in the VPE-qGM of Eq. (27).

7 Conclusion and Final Remarks

The visual approach of the VPE-qGM environment enables the implementation
and validation of fuzzy X(N)or operations using QC. The description of these
operations is based on compositions of controlled and unitary quantum trans-
formations, and the corresponding interpretation of fuzzy operations is obtained
by applying operators of projective measurements.

Further work aims to consolidate this specification including not only other
fuzzy connectives, constructors (e.i. automorphisms and reductions) and the cor-
responding extension of (de)fuzzyfication methodology from formal structures
provided by QC. Finally, it may also contribute to designing new algorithms
based on considering the abstractions provided by quantum FSs and related
interpretation of fuzzy logic concepts.
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