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Abstract

Economic and financial phenomena are highly complex and non-linear.
However, surprisingly, in many cases, these phenomena are accurately
described by linear models – or, sometimes, by piecewise linear ones. In
this paper, we show that fuzzy techniques can explain the unexpected
efficiency of linear and piecewise linear models: namely, we show that a
natural fuzzy-based precisiation of imprecise (“fuzzy”) expert knowledge
often leads to linear and piecewise linear models.

We also discuss which expert-motivated nonlinear models should be
used to get a more accurate description of economic and financial phe-
nomena.
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1 Linear and Piecewise Linear Methods Are
Surprisingly Efficient for Describing Nonlin-
ear Economic Phenomena: Formulation of the
Problem

It is well known that economic and financial phenomena are very complex and
non-linear. However, surprisingly, many such phenomena are well described by
linear models, such as the AutoRegressive-Moving-Average model with eXoge-
nous inputs model (ARMAX) [3, 4]:

qt =

p∑
i=1

φi · qt−i +

b∑
i=1

ηi · dt−i + εt +

q∑
i=1

θi · εt−i,

where qt is the value of an economic quantity at time t, dt is the value of the
external quantity at time t, and φi, ηi, and θi are constants. Here, εt are random
variables εt = σt ·zt, where zt is white noise with 0 mean and standard deviation
1, and the dynamics of variances σ2

t is also described by a linear formula: namely,
by the Generalized AutoRegressive Conditional Heterosckedasticity (GARCH)
model [2, 3, 4]:

σ2
t = α0 +

ℓ∑
i=1

βi · σ2
t−i +

k∑
i=1

αi · ε2t−i.

Sometimes, to get a more adequate description of the corresponding eco-
nomic and financial phenomena, we need to use piecewise linear models, in
which different linear models are used to describe different periods.

How can we explain this counter-intuitive success of linear and piecewise
linear models in describing non-linear phenomena?

2 Need to Use Expert Knowledge and Fuzzy
Logic

Models come from experts. To explain this phenomenon, let us recall that
while the parameters of the models that describe real-world phenomena are
tuned based on the observations, the models themselves come from experts.

Experts usually start with knowledge formulated in imprecise (“fuzzy”)
natural-language terms: for example, they can say that if the federal bank
interest rate increases, more funds move into bonds, away from stocks. Once
economists formulate such natural-language statements, other researchers pre-
cisiate these statements by transforming them into precise models.

It is reasonable to use fuzzy logic. Precisiating imprecise expert knowledge
– i.e., translating it from the imprecise natural language to precise formulas – is
exactly what fuzzy logic has been invented for [5, 7, 8]. Fuzzy logic techniques
has been tuned on numerous practical examples, they have many successful
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applications. It is therefore reasonable to use these techniques to transform
economic expert knowledge into a precise model.

Expert knowledge is usually described in terms of natural-language if-
then rules. We want to describe the dependence of the future values y1, . . . , ym
of the quantities of interest on the values x1, . . . , xn of these and related quan-
tities at present and in the past moments of time.

Expert knowledge about this dependence usually comes in the form of several
if-then rules. Let us denote the number of such rules by K.

Some of these rules enable us to directly describe the corresponding predic-
tions, i.e., they provide an explicit conclusion about the future values based on
the current and past values. Other rules do not provide such a direct prediction,
but describe relations between future values, relations that help to make correct
predictions. For example, a rule may say that if in the future, there is a large
increase in unemployment, then this would lead to a large decrease in stock
market value.

In general, each condition or conclusion of each of the rules is based:

• either on the value of one of the quantities xi or yj ,

• or on the value of the difference between the values of a quantity at two
different moments of time or, more generally, on the difference between
two quantities.

For example, a reasonable rule may say that if an interest rate in one country
is much higher than the interest rate in another one, then we will have a big
outflow of capital into a country with a higher interest rate.

To simplify the description of the rules, let us introduce an alternative
denotation of each unknown yj as xn+j . In these terms, each of these rules
k = 1, . . . ,K has thus the following if-then form

if Ak,1(uk,1) and . . . and Ak,nk
(uk,nk

) then Bk(vk),

where:

• Ak,j(uk,j) and Bk(vk) are imprecise properties like “small”, “medium”,
etc.,

• each value uk,j is either one of the variables, i.e., xi(k,j) for some i(k, j),
or the difference between two variables xf(k,j) − xs(k,j); and

• each value vk is either one of the variables, i.e., xi(k) for some i(k), or the
difference between two variables xf(k) − xs(k).

For example, one of the possible versions of the above rule about bonds
corresponds to the case when:

• nk = 1,

• uk,1 is the increase in interest rates, i.e., the difference between the current
and the previous interest rates,
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• vk is the amount of money moving into bonds, i.e., the difference between
the future amount y and the current ui investments in bonds,

• Ak,1 is “big”, and

• Bk is “large”.

Fuzzy logic technique: reminder. Fuzzy logic helps transform if-then rules
of the above type into precise formulas. The use of fuzzy logic starts with
selecting membership functions µk,j(uk,j) and µk(vk) representing imprecise
terms Ak,j and Bk. Specifically, e.g., for each real number uk,j , the value
µk,j(uk,j) ∈ [0, 1] is the degree to which this number satisfies the property
Ak,j (e.g., the degree to which uk,j is big).

Once we know the membership functions, then, for each combination of the
values

(x1, . . . , xn, xn+1, . . . , xn+m) = (x1, . . . , xn, y1, . . . , ym),

we can describe the degree µk,j(uk,j) to which each of the conditions Ak,j(uk,j)
is satisfied. We then need to use these degrees to find a degree to which the
entire condition

“Ak,1(uk,1) and . . . and Ak,nk
(uk,nk

)”

is satisfied. To compute this combined degree, we can use a fuzzy generalization
of the “and” operation of classical logic. Such generalizations are known as
“and”-operations or t-norms f&(a1, a2, . . .). Once we have selected a t-norm
f&(a1, a2, . . .), then, for each combination (y1, . . . , ym) of future values, we can
compute the degree Ck(y1, . . . , ym) to which the condition of the k-th rule is
satisfied as

Ck(y1, . . . , ym) = f&(µk,1(uk,1), . . . , µk,nk
(uk,nk

)). (1)

Similarly, we can compute the degree µk(vk) to which the conclusion Bk(vk) of
the k-th rule is satisfied.

To find the degree Dk(y1, . . . , ym) to which the k-th rule itself is satisfied,
we can then apply a fuzzy implication operator f→(a, b) – a generalization of
the implication operation of classical 2-valued logic – to the degrees to which
the condition and the conclusion are satisfied. As a result, for each combination
(y1, . . . , ym), we get the following formula for the degreeDk(y1, . . . , ym) to which
the k-th rule is satisfied for these values yj :

Dk(y1, . . . , ym) = f→(Ck(y1, . . . , ym), µk(vk)). (2)

We want to know to what degree D(y1, . . . , ym) all K rules are satisfied, i.e., to
what degree the 1st rule is satisfied and the 2nd rule is satisfied, etc. To find
this degree, it is natural to again use the “and”-operation:

D(y1, . . . , ym) = f&(D1(y1, . . . , ym), . . . , DK(y1, . . . , ym)). (3)
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Now, for each possible combination of future values y1, . . . , ym, we know the
degree D(y1, . . . , ym) to which these value yj are consistent with the known
values x1, . . . , xn and with the expert rules. If we need to come up with a
numerical prediction, it is reasonable to select the “most possible” combination
(y1, . . . , ym), i.e., the value for which the corresponding degree D(y1, . . . , ym) is
the largest possible:

D(y1, . . . , ym) → max
y1,...,ym

. (4)

To apply fuzzy logic technique, we need to select appropriate oper-
ations. As one can see from the above description, to apply the fuzzy logic
technique, we need to select appropriate “and”-operation, an appropriate im-
plication operation, and appropriate membership functions.

From the purely mathematical viewpoint, in each cases, there are many
possible choices. Let us analyze which of these choices are most appropriate for
the analysis of economic and financial data.

3 Specifics of Economic and Financial Expert
Knowledge

In many applications areas, there is a very small amount of best experts. For
example, among all the surgeons performing a certain kind of surgery, there are
a few best ones; similarly, there are few doctors who are the best in diagnosing a
certain rare disease, etc. Since there are few of these experts, it is not possible to
utilize them in all relevant situations. In such cases, it is important to describe
the expertise of each individual expert as accurately as possible – so that others
can use this expertise.

In economics and finance, the situation is different. There is no clear small
group of best experts: at any given moment of time, some financial and in-
dustrial leaders exhibit excellent results – only to be defeated by competitors.
However, while we cannot point to a single expert as the best, there is no doubt
that financial and economic leaders as a whole form a group with the desired
expertise. In other words, in economics and finance, it is not that important
to accurately describe the opinion of each individual expert, it is much more
important to describe the opinion of the group of experts.

With this in mind, the best way to determine the corresponding membership
functions is by polling: for each statement S like “an interest rate increase of
4% is big”, we ask several (N) experts whether they believe this statement to
be true, and if N(S) of them agree that this statement is true, we take the ratio
N(S)

N
as the degree µ(S) to which this statement is true.

Our objective is to find the value µ(S) as accurately as possible. It is known
that in a poll, the more people we ask, the more accurate is the resulting opinion.
Thus, a natural way to improve the accuracy of the poll is to ask more experts.
However, there is a catch. When at first, we could only afford to poll N people,
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we thus selected the top leaders in the field. Now that we add N ′ extra experts,
these experts may be too intimidated by the reputation of the original experts
(like Warren Buffett) to voice their own opinions – especially if the original
super-experts disagreed between themselves. With the new experts mute, we
still have the same number N(S) of experts who agree with the statement S –
but now we have to divide it not by the original number N , but by the new

number N + N ′. As a result, instead of the original value µ(S) =
N(S)

N
, we

get a new value µ′(S) =
N(S)

N +N ′ . The values µ′(S) and µ(S) are related by a

simple formula µ′(S) = c · µ(S), where c =
N

N +N ′ .

Thus, for the exact same opinion, by selecting two different numbers of ex-
perts N and N + N ′, we get two numerically different membership functions:
µ(S) and c · µ(S). These two membership functions represent the same expert
opinion and are, thus, equivalent in some reasonable sense. It is therefore rea-
sonable to select “and”-operations which are consistent with this equivalence.

4 Selecting an Appropriate “And”-Operation

An “and”-operation f&(a, a
′) transform the degrees of belief a and a′ in state-

ments S and S′ into a degree of belief in a combined statement S&S′. Con-
sistency means that if we simply re-scale each degree, i.e., replace a with an
equivalent degree c · a and replace a′ with an equivalent degree c′ · a′, for some
constants c and c′, then he resulting degrees f&(c ·a, c′ ·a′) should also be equiv-
alent to the original degrees, i.e., we should have f&(c · a, c′ · a′) = C · f&(a, a′)
for some constant C depending on c and c′. Thus, we arrive at the following
definition.

Definition 1. We say that a t-norm f&(a, b) is consistent with polling if for
every c and c′ there exists a value C(c, c′) for which, for all a and a′, we have

f&(c · a, c′ · a′) = C(c, c′) · f&(a, a′). (3)

It turns out that this requirement uniquely determines the “and”-operation:

Proposition 1. The only t-norm which is consistent with polling is the product
f&(a, a

′) = a · a′.

Proof. Let us first consider the case when c′ = 1. In this case, the formula (3)
takes the form

f&(c · a, a′) = C(c) · f&(a, a′). (4)

Similarly, for any c′, we have

f&(c
′ · c · a, a′) = C(c′) · f&(c · a, a′) = C(c′) · C(c) · f&(a, a′). (5)
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One the other hand, substituting c′ · c into the formula (4), we get

f&(c
′ · c · a, a′) = C(c′ · c) · f&(a, a′). (6)

By comparing the right-hand sides of the formulas (5) and (6), we conclude that
for every c and c′, we have

C(c′ · c) = C(c′) · C(c). (7)

A t-norm is increasing in each of the variables, so from (4), we can conclude that
the function C(c) is increasing. It is known (see, e.g., [1]) that every increasing
solution to the functional equation (7) has the form C(c) = cα for some α > 0.
Substituting this expression into the formula (4), we get

f&(c · a, a′) = cα · f&(a, a′). (8)

In particular, for a = 1, we get

f&(c, a
′) = cα · f&(1, a′) = cα · a′. (9)

The t-norm is symmetric, so we have cα · a′ = c · (a′)α, hence α = 1 and
f&(c, a

′) = c · a′. The proposition is proven.

5 Selecting an Appropriate Implication Opera-
tion

An implication is naturally related to an “and”-operation. Namely, an implica-
tion A → B means that if we add it to A, we get B. If we get a statement weaker
than the implication to A, then we not necessarily get B. Thus, implication can
be defined as the supremum of all such “below-implication” values, i.e., as

f→(a, b) = max{c : f&(a, c) ≤ b}.

For the case when the “and”-operation is a product, we get

f→(a, b) =
b

a
when a > b, else f→(a, b) = 1. (10)

This is the implication operation that we will use in this paper.

6 Selecting Appropriate Membership Functions

Idea. As we have mentioned earlier, one of the main features of expert knowl-
edge in economics and finance is that, in contrast to many other areas of knowl-
edge, here we need to combine the opinions of several experts. It is therefore
reasonable to select a family of membership functions in such a way that not
only the opinion of each expert can be described by a membership function
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from this family, but also that the “and”-combination of these opinions should
be described by a function from this same family.

Since we have decided to express “and” as a product, this means that our
family F of membership functions should be closed under multiplication:

if µ1(x) ∈ F and µ2(x) ∈ F , then µ1(x) · µ2(x) ∈ F .

Analysis of this idea. To analyze the situation, it is convenient to use the
fact that the logarithm of the product is equal to the sum of the logarithms.
Thus, if instead of the original family of functions, we consider their logarithms

f(x)
def
= ln(µ(x)), we can conclude that the family L of all such logarithms

should be closed under addition.
In the computer, at any given moment of time, we can only represent finitely

many parameters. Thus, it is reasonable to conclude that the linear space
generated by the set L can also described by finitely many parameters, i.e., is
finite-dimensional.

Scale-invariance. The numerical values of the economics- and finance-related
quantities xi and y depend on the choice of the unit. For example, if, instead of
dollars, we start measuring these quantities in euros, we get different numerical
values. In general, if we replace a measuring unit with another unit which is λ
times larger, then the original numerical value x of the corresponding quantity

is replaced by a new value x′ =
x

λ
.

Under this re-scaling, each original membership function µ(x) takes the form
µ′(x′) = µ(x) = µ(λ·x′). It is reasonable to require that this re-scaling transform
membership functions from the selected family F into functions from the same
family, i.e., that the family F (and thus, the family L of the logarithms of
functions µ ∈ F ) be invariant with respect to this re-scaling.

Definition 1. Let n be an arbitrary integer. We say that a finite-dimensional
linear space L of analytical functions is scale-invariant if for every function

f ∈ L and for every λ > 0, the function fλ(x)
def
= f(λ · x) also belongs to the

family L.

Proposition 2. [6] For every scale-invariant finite-dimensional linear space L
of analytical functions, every element f ∈ L is a polynomial.

Proof of Proposition 2. Let L be a scale-invariant finite-dimensional linear
space F of analytical functions, and let f(x) be a function from this family L.

By definition, an analytical function f(x) is an infinite sum of monomials
m(x) of the type ak · xk:

f(x) = a0 + a1 · x+ a2 · x2 + . . .

If we multiply x by λ, then the value of this monomial is multiplied by λk:

f(λ · x) = a0 + λ · a1 · x+ λ2 · a2 · x2 + . . .
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Some of the coefficients ai may be zeros – if the original expansion has no
monomials of the corresponding order. Let k0 be the first index for which
ak0

̸= 0. Then,
f(x) = ak0 · xk0 + ak0+1 · xk0+1 + . . .

Since the family L is scale-invariant, it also contains the function fλ(x) = f(λ·x).
At this re-scaling, each term ak · xk is multiplied by λk; thus, we get

fλ(x) = λk0 · ak0 · xk0 + λk0+1 · ak0+1 · xk0+1 + . . .

Since L is a linear space, it also contains a function

λ−k0 · fλ(x) = ak0 · xk0 + λ · ak0+1 · xk0+1 + . . .

Since L is finite-dimensional, it is closed under turning to a limit. In the limit
λ → 0, we conclude that the term ak0

· xk0 also belongs to the family L.
Since L is a linear space, this means that the difference

f(x)− ak0 · xk0 = ak0+1 · xk0+1 + . . .

also belongs to L. If we denote, by k1, the first index k1 > k0 for which the term
ak1 ̸= 0, then we can similarly conclude that the corresponding term ak1 · xk1

also belongs to the family L, etc.
We can therefore conclude that for every index k for which term ak ̸= 0, the

corresponding term ak · xk also belongs to the family L.
Monomials of different total order are linearly independent. Thus, if there

were infinitely many non-zero coefficients ak ̸= 0, we would have infinitely many
linearly independent function in the family L – which contradicts to our assump-
tion that the family L is a finite-dimensional linear space.

So, in the expansion of the function f(x), there are only finitely many non-
zero terms. Hence, the function f(x) is a sum of finitely many monomials – i.e.,
a polynomial.

The proposition is proven.

Conclusion about membership functions. So, we conclude that the loga-
rithms of the membership functions are polynomials, and thus, each membership
function has the form µ(x) = exp(P (x)) for an appropriate polynomial P (x).

Simplest possible membership functions are Gaussian. We need to make
sure that µ(x) ∈ [0, 1] for all x; this excludes linear functions P (x) = a + b · x,
since for them exp(P (x)) tends to ∞ either when x → ∞ (for b > 0) or when
x → −∞ (for b < 0). Thus, the simplest possible membership functions of the
type µ(x) = exp(P (x)) are the functions corresponding to quadratic polynomials
P (x).

Each quadratic polynomial P (x) can be represented as C · (x − a)2 + b for
some C, a, and b. Thus,

µ(x) = exp(P (x)) = exp(b) · exp
(
C · (x− a)2

)
.
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The requirement that µ(x) ∈ [0, 1] for all x implies that C < 0, i.e., that C = −c
for some c > 0. Also, we have argued earlier that the degrees of belief (and thus,
membership functions) can only be defined modulo a multiplicative constant.
So, we can safely conclude that

µ(x) = exp
(
−c · (x− a)2

)
,

i.e., that all the membership functions that we consider are Gaussian.

7 Justification of Piecewise Linear Dependence

Derivation. Let us show that when the “and”-operation is a product, the
implication operation comes from the product, and all membership functions
are Gaussian, the standard fuzzy logic procedure (1)–(4) leads to piecewise
linear dependencies. This will complete our justification.

Indeed, we assume that all membership functions are Gaussian, i.e., that

µk,j(uk,j) = exp
(
−ck,j · (uk,j − ak,j)

2
)

and
µk(vk) = exp

(
−ck · (vk − ak)

2
)

for all k and j. Since the “and”-operation is the product, we get

Ck(y1, . . . , ym) = f&(µk,1(uk,1), . . . , µk,n(uk,nk
)) =

µk,1(uk,1) · . . . · µk,n(uk,nk
) =

exp
(
−ck,1 · (uk,1 − ak,1)

2
)
· . . . · exp

(
−ck,nk

· (uk,nk
− ak,nk

)2
)
=

exp

−
nk∑
j=1

ck,j · (uk,j − ak,j)
2

 .

We can now use the formula (10) for the implication to find the degree
Dk(y1, . . . , ym). Specifically, when the degree Ck(y1, . . . , ym) is smaller than or
equal to the degree

µk(vk) = exp
(
−ck · (vk − ak)

2
)
,

i.e., equivalently, when

nk∑
j=1

ck,j · (uk,j − ak,j)
2 ≥ ck · (vk − ak)

2, (11)

then Dk(y1, . . . , ym) = 1.
On the other hand, when Ck(y1, . . . , ym) > µk(vk), i.e., equivalently, when

nk∑
j=1

ck,j · (uk,j − ak,j)
2 < ck · (vk − ak)

2, (12)
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then

Dk(y1, . . . , ym) =
ck(vk)

Ck(y1, . . . , ym)
=

exp

−

ck · (vk − ak)
2 −

nk∑
j=1

ck,j · (uk,j − ak,j)
2

 . (13)

The resulting expression (3) for the maximized degree thus has the form

D(y1, . . . , ym) = D1(y1, . . . , ym) · . . . ·DK(y1, . . . , ym) =

∏
k∈K

exp

−

ck · (vk − ak)
2 −

nk∑
j=1

ck,j · (uk,j − ak,j)
2

 , (14)

where K is the set of all the indices k for which the inequality (12) is satisfied.
For each combination of inputs (x1, . . . , xn), the maximum in (4) is attained

for the values (y1, . . . , ym) characterized by some set K ⊆ {1, . . . ,K}.
A finite set {1, . . . ,K} has finitely many possible subsetsK. We can therefore

divide the set of all possible combinations of inputs (x1, . . . , xn) into finitely
many regions corresponding to different subsets K. In each of these regions, the
predicted values y1, . . . , ym can be determined by maximizing the corresponding
expression (14). Since the exponent of the sum is equal to the product of the
exponents, we can conclude that

D(y1, . . . , ym) =

exp

−
∑
k∈K

ck · (vk − ak)
2 −

nk∑
j=1

ck,j · (uk,j − ak,j)
2

 . (15)

The function exp(−z) is monotonically decreasing, so maximizing the expression
(15) is equivalent to minimizing the expression

E
def
=

∑
k∈K

ck · (vk − ak)
2 −

nk∑
j=1

ck,j · (uk,j − ak,j)
2

 . (16)

To minimize this expression, we can differentiating it with respect to each of
the unknowns y1, . . . , ym and equate each of these derivatives to 0. Each of
the expressions uk,j and vk is linear in terms of xi and yj ; thus, each equation
∂E

∂yj
= 0 is linear in terms of xi and yj . Thus, to find m unknown, we have a

system ofm linear equations y1, . . . , ym that linearly include xi in the right-hand
sides, i.e., equations

m∑
j′=1

Aj,j′ · yj′ = Bj +

n∑
i=1

Cj,i · xi, j = 1, . . . ,m, (17)
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for some constants Aj,j′ , Bj , and Cj,i. In matrix form, we can rewrite this as
Ay = B + Cx, hence y = A−1(B + Cx) = A−1B +A−1Cx.

Conclusion. Thus, on each of finitely many regions, we get linear dependence
of the predicted quantities yj on the inputs x1, . . . , xm, i.e., we indeed get a
piecewise linear dependence.

8 Discussion: Linear and Piecewise Linear
Models, What Next?

Our justification of piecewise linear models is based on the selecting, among all
membership functions which are consistent with our assumptions, the simplest
ones – which turned out to be Gaussian.

If it turns out that in some situations, the resulting piecewise linear mod-
els are not sufficient accurate, then a natural idea is to use the next simplest
class of corresponding membership functions. In general, we have membership
functions of the type µ(x) = exp(P (x)) for some polynomial P (x). In our anal-
ysis, we selected the simplest case when these polynomials are quadratic (linear
polynomials are not possible since then we will not have µ(P (x)) ∈ [0, 1] for
all x).

To get a more adequate description, we therefore need to consider polyno-
mials of higher order. Cubic polynomials are not possible (for the same reason
as linear ones), so the next simplest case is the case of fourth order polynomials.
For second order polynomials, our analysis led us to a system of m equations
each of which is linear in terms of the inputs xi and the predicted values yj . For
fourth order polynomials, a similar analysis will lead to a system of m equations
each of which is cubic in terms of the inputs xi and the predicted values yj .

Since the analysis of expert knowledge naturally leads to such cubic systems,
it may be a good idea, in situations when we seek better prediction accuracy,
to start adding cubic terms to the known piecewise linear models.
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