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Abstract

In his correspondence with Grigory Mints, the famous logician Georg
Kreisel noticed that many results of constructive mathematics seem easier-
to-prove than the corresponding classical (non-constructive) results — al-
though he noted that these results are still far from being simple and the
corresponding open problems are challenging. In this paper, we provide
a possible explanation for this empirical observation.

1 Constructive Mathematics and Kreisel’s Ob-
servation: A Brief Introduction to the Prob-
lem

Main objectives of science and engineering. In this paper, we deal with
Kreisel’s observation about the so-called constructive mathematics. In order to
understand what is constructive mathematics, we need to recall what are the
main objectives of science and engineering.

One of the main objectives of science is to predict the future state of the
world: we want to predict tomorrow’s weather, we want to predict what will
happen to a building during an earthquake of a certain strength, etc.

Once we learn to predict what will happen in the future, the next task is
how to change the future so that it will be more beneficial to us. Generally
speaking, this is already the task not for science but for engineering. One of the
main objective of engineering is:

e to design objects with that will make it possible to achieve the desired
result, and

e to come up with control strategies that will lead to this result.



For example, if our objective is to land on Mars, we must:
e design an appropriate spaceship, and

e develop a control strategy that will enable us to land this spaceship on
Mars.

Need for constructive mathematics. To solve a problem of science and/or
engineering, we usually describe, in precise terms (i.e., in terms of mathematics)
all our knowledge about the corresponding domains, and we use this knowledge
to come up with appropriate predictions, constructions, and/or control strate-
gies.

For example, to come up with an appropriate prediction, we usually describe
the dynamics of the world in terms of the corresponding system of (partial)
differential equations, and then we solve this system of equations to come up
with the corresponding prediction.

The problem with this approach is that we are interested in algorithms for
predictions, but traditional mathematics does not deal with algorithms. More-
over, it is often not even easy to formulate the existence of an algorithm.

The closest we get to algorithms in the traditional mathematics is when we
prove existence: the existence of a solution, the existence of a construction with
the desired property, or the existence of a control strategy that satisfies a given
objective.

e Sometimes, the existence proof is straightforward, we prove the existence
of the desired object by explicitly constructing it, so that from this proof,
we can explicitly extract the corresponding algorithm.

e However, often, proofs are indirect — e.g., such as many proofs by contra-
diction. In this case, even after we have proved the existence of a solution,
it is still not clear how to actually construct the corresponding solution.

It is therefore important to extend the traditional mathematics, so that it will
be able to describe not only what is theoretically possible, but also to explicitly
describe what is algorithmically constructible. Such an extension is known as
constructive mathematics.

What is constructive mathematics: a brief introduction. In constructive
mathematics, existence means that we have an explicit algorithm that enables
us to construct the corresponding object. For example, in constructive mathe-
matics, the statement

VYn3m P(m,n)

means that there exists an algorithm e such that for every n, the property
P(m,n) holds for m = e(n):

JdeVn P(e(n),n).

Traditional (non-algorithmic) existence can also be describe in constructive
mathematics, usually as a double negation ——3n P(n).



Comment. It should be mentioned that in the traditional mathematics, the
double negation of a statement is equivalent to the statement itself, since the
law of excluded middle P V =P is true for every statement P. In constructive
mathematics, however, disjunction A V B is viewed as a particular case of exis-
tence and is thus, interpreted as the fact that we know exactly which one of the
two statements A and B is true. Since arithmetic is not decidable, we cannot
always tell whether P or =P is true. Thus, in constructive mathematics, the
law of excluded middle is no longer always true, and thus, the double negation
of a statement is, in general, not equivalent to the original statement.

More information about constructive mathematics can be found, e.g., in
[1, 2, 3, 4, 6].

Kreisel’s observation. In his unpublished 1973 correspondence with Grigory
Mints, the famous logician George Kreisel noticed [5] that many results of con-
structive mathematics seem easier to prove that the corresponding results of
traditional (non-constructive mathematics) — although, of course, not so much
easier that we can actually solve all the corresponding open problems.

Why this observation is puzzling. Kreisel’s observation seem counterintu-
itive:

e the goal of constructive mathematics is to go beyond the traditional one,
to not only prove the existence, but also to provide the corresponding
algorithms;

e so, at first glance, the problems of constructive mathematics should be
harder-to-solve than the corresponding problem of the traditional (non-
constructive) mathematics;

e however, in many cases, as Kreisel has correctly observed, these problems
are easier to solve.

What we do in this paper. In this paper, we provide a possible explanation
for Kreisel’s seemingly counter-intuitive observation.

2 Kreisel’s Observation Explained

Known fact: most practically useful results can be reformulated in
arithmetic terms. The usual mathematical description of differential equa-
tions and their solutions requires quantifiers over real numbers. However, it is
known that from the practical viewpoint, integers are sufficient to describe most
of the practically important properties and results; see, e.g., [1, 2, 3, 4, 6].

Indeed, the reason why real numbers are used in mathematics it to describe
the actual values of the corresponding physical quantities. In practice, however,
when we measure a quantity, we never get the exact real numbers, we get an
approximate value — which, in modern days, is usually described by a binary-
rational number, i.e., a number of the type m - 27" — which can be describe by
two integers m and n.



Similarly, when, e.g., we describe continuity of a function f(x), the usual
definition is that for every real number € > 0 there exists a real number § >
0 such that d(z,z’) < ¢ implies that d(f(x), f(z’)) < e. However, one can
easily check that this definition is equivalent to requiring that for every integer
k > 0 there exists an integer ¢ > 0 for which d(z,2’) < 27¢ implies that
a(f (@), (@) < 27",

Similar equivalent reformulations can be made for many other properties.

A typical practice-related problem. A typical practice-related problem is,
given an input, to algorithmically produce an output. For example:

e we know the equations and the initial conditions, we need to compute the
future values of the corresponding quantities;

e we know the objectives, we need to come up with a design and/or with a
control strategy that lets us achieve these objectives, etc.

In terms of constructive mathematics, if we denote the input by x, the desired
output by y, and the property that we want this output to satisfy by P(z,y),
then we want to prove the formula of the following type:

Va Jy P(x,y). (1)

Let us show that this constructive formula is indeed easier-to-solve than its
classical counterpart.

The complexity of formulas: a brief reminder. In general, the complexity
of a formula is determined by its number of quantifiers:

e formulas without quantifiers are algorithmically decidable,

e formulas with one quantifier are, in general, more difficult to decide, for-
mulas with two quantifiers are even more difficult to decide, etc.

In general, each formula can be described in the so-called prenex normal form,
as

Qi1 Q2o ... Quay P(1,...,2p),

where P(z1,...,2,) is a quantifier-free formula, and @; are alternating quanti-
fiers, so that:

e 1 is always followed by V, and
e V is always followed by 3.

The class of all formulas of this type with ()1 = 3 is denoted by ¥,,, and the
class of all formulas of this type with @1 =V is denoted by IL,,.

Each of the two classes ¥,, and II,, is, in general, easier-to-decide than each
of the two classes ¥, 41 and II,,;;. Some formulas can be represented in both

forms ¥, and II,. The resulting intersection of these two classes is usually

denoted by A, % %, N1I,,.. Tt is known that:



e each of the two classes X,, and II,, is, in general, easier-to-decide than the
intersection class A, 41, and

e the intersection class is, in general, easier-to-decide than each of the two
classes ¥, 11 and Il 4.

Resulting explanation of Kreisel’s observation. As one can see from the
formula (1), its classical analogue is, in general, a formula from the class 5.

On the other hand, the constructive analogue of the formula (1), on the one
hand, has the same ¥s-form, but on the other hand, by definition of constructive
mathematics, also has the form

JeVz Ple(z), x),

i.e., the form Ils.

Thus, the constructive formulas of the type (1) can be described both in the
Y- and in Ilx-forms and thus, belong to the intersection class A;. We have
already mentioned that, in general, formulas from the class As are easier to
solve than formulas from the class II;. This explains Kreisel’s observation that
results of constructive mathematics are, in general, somewhat easier to prove
than the similar non-constructive results.

On the other hand, the class Ay is far from being decidable: even its sub-
classes ¥; and II; (with one quantifier) are not decidable. Thus, in spite of
its relative simplicity, constructive mathematics still contains challenging open
problems.

So, Kreisel’s observation has been explained.
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