
University of Texas at El Paso
DigitalCommons@UTEP

Departmental Technical Reports (CS) Department of Computer Science

10-2015

Towards Making Theory of Computation Course
More Understandable and Relevant: Recursive
Functions, For-Loops, and While-Loops
Vladik Kreinovich
University of Texas at El Paso, vladik@utep.edu

Olga Kosheleva
University of Texas at El Paso, olgak@utep.edu

Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep

Part of the Computer Sciences Commons
Comments:
Technical Report: UTEP-CS-15-78
Published in Proceedings of the 5th International Conference "Mathematics Education: Theory and
Practice" MATHEDU'2015, Kazan, Russia, November 27-28, 2015, pp. 17-19.

This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for
inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact
lweber@utep.edu.

Recommended Citation
Kreinovich, Vladik and Kosheleva, Olga, "Towards Making Theory of Computation Course More Understandable and Relevant:
Recursive Functions, For-Loops, and While-Loops" (2015). Departmental Technical Reports (CS). Paper 952.
http://digitalcommons.utep.edu/cs_techrep/952

http://digitalcommons.utep.edu?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/computer?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.utep.edu/cs_techrep/952?utm_source=digitalcommons.utep.edu%2Fcs_techrep%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

TOWARDS MAKING THEORY OF COMPUTATION COURSE MORE

UNDERSTANDABLE AND RELEVANT: RECURSIVE FUNCTIONS, FOR-LOOPS, AND

WHILE-LOOPS

Kreinovich, Vladik, PhD, Professor

Kosheleva, Olga, PhD, Associate Professor

vladik@utep.edu , olgak@utep.edu

Abstract: In this paper, we show how we can make a theory of computation course more

understandable and more relevant: namely, we show that a seemingly abstract notion of primitive

recursion is a direct counterpart to for-loops, while the mu-recursion is an analog of while-loops.

Keywords: theory of computation, teaching computing, primitive recursion, mu-recursion,

for-loops, while-loops

Theory of Computation is useful. Theory of computation is very important for computing

practice; see, e.g., [1]. Many of its general abstract concepts are actively used in practice: e.g., finite

automata are a useful technique in designing computer hardware and in designing compilers.

Even negative (non-computability) results are practically useful. Indeed, a natural tendency

is to write each code so that it can reused later for similar problems -- i.e., to make it as general as

possible. However, when a problem is generalized too much, it sometimes becomes algorithmically

unsolvable. It is thus desirable to know when a feasible algorithm is not possible -- so as not to

waste time on trying to design an impossible general algorithm.

From this viewpoint, it is desirable that the students not only learn the results of theory of

computations, but they should also learn the proofs -- so that in the future, when facing similar

computational problems, they will be able to prove algorithmic impossibility of too broad

generalizations by appropriately modifying these proofs.

Pedagogical problem. And here lies a pedagogical problem: while the current textbooks explain

the relevance of the results, the proofs use abstract notions whose relevance to computing is

unclear.

For the students to be able to understand and modify the proofs, they should be able to

understand the motivations behind the steps and the relation between the abstract notions and

computer practice.

What we do in this paper. In this paper, we explain the relation between the abstract notions and

computer practice on the example of the first notion with which many graduate theory of

computation courses start: the notion of a recursive function.

Notion of a recursive function: brief history. This notion -- as well as an auxiliary notion of a

primitive recursive function -- comes from the 1930s pioneering work of the US mathematician

Alonzo Church.

The possibility to clarify these notions stems from the fact that Church's formalism provided

a way to describe computations -- what programming languages do now, once computers and

compilers have been invented -- and many of its features strongly influenced the actual

programming languages (starting with LISP and Scheme).

In this sense, programming languages and theoretical concepts have a joint origin. Yes, the

programming languages and the theory formalisms evolved in somewhat different directions.

However, as we will show, it turns out that it is possible to relate recursive functions to

programming practice.

mailto:olgak@utep.edu

Specifically, we will show that primitive recursive functions can be interpreted as

formalizing for-loops, while the notion ofmu-recursion (used to define general recursive functions)

can be viewed as a natural formalization of while-loops.

How to describe a for-loop in precise terms? Let us start with a simple program for computing

the power am:

power = 1;

for(int i = 1; i <= m; i++)

{power = power * a;}

This is not a precise mathematical notation, because in math, a variable is assumed to have the same

value in different parts of the equation, but here,

power = power * a;

means that to the variable “power”, we assign a new value: the product of the old value and the

value a.

To make the description mathematically precise, we must thus explicitly indicate the

iteration number at which we consider the value of the variable “power”: initially, before iterations

start, we have the value power(0), then after the first iteration, we have the value power(1), etc. In

these terms, the above code takes the following form:

 power(0) = 1

 power(i + 1) = power(i) * a

The value of the variable “power” also depends on the value of the variable a. If we explicitly

describe this dependence, we end up with the following description:

 power(a, 0) = 1

 power(a, i + 1) = power(i, a) * a

In a general for-loop with parameters a1, …, ak, in which a variable h changes:

 we first assign some initial value to the variable h:

h(a1, …, ak, 0) = f(a1, …, ak)

for some expression f(a1, …, ak), and then

 on each iteration, we use the previous value of h, the values of the parameters aj, and the

number of the iteration I to produce a new value:

h(a1, …, ak, i + 1) = g(a1, …, ak, i, h(a1, …, ak, i))

for some expression g.

Resulting description of a for-loop. Thus, we arrive at the following formal description of a for-

loop. Let a1, …, ak be a list of parameters. To describe a for-loop in which a variable h changes, we

need to know:

 an algorithm f(a1, …, ak) assigning an initial value to h; this value may depend on the

parameters a1, …, ak; and

 an algorithm g(a1, …, ak, i, h(a1, …, ak, i)) that describes what is happening inside the loop,

on each iteration.

Once we have these two algorithms f and g, we can describe a function h computed by the for-loop:

h(a1, …, ak, 0) = f(a1, …, ak); h(a1, …, ak, i + 1) = g(a1, …, ak, i, h(a1, …, ak, i));

This is exactly Church's primitive recursion! So, primitive recursion can be described as a natural

formalization of a for-loop.

Beyond for-loops: a while-loop. In the traditional for-loop, we know beforehand how many

iterations we make.

In some algorithms, we do not know beforehand how many iterations we will need. Instead,

we run iterations xk until the process converges. For example, to compute the square root of a given

number a, we can use the following iterative algorithm:

 x0 = 1; xk+1 = (1/2) * (xk + a / xk).

We continue these iterations until the difference between the values of the two consequent iterations

becomes smaller than a pre-defined threshold t:

 | xk+1 -- xk | < t.

In general, we run a while-loop, which runs until a certain stopping condition P is satisfied.

So, to describe while-loops, we need to describe the smallest m for which the condition

P(n1, …, nk, m)

holds, where n1, …, nk denote auxiliary parameters.

This value smallest value

mu m . P(n1, …, nk, m)

is exactly Church's mu-recursion!

Thus, the basic ideas behind recursive functions are exactly natural formalizations of for-

and while-loops.

Resulting meaning. We have shown that:

 primitive recursion corresponds to for-loops, and

 mu-recursion corresponds to while-loops.

From this viewpoint, many theoretical results acquire natural practical meaning.

As an example, let us consider the result that not every computable function is primitive

recursive. This result is important because it is the first, simplest example of the diagonal

construction that is later used in many other proofs.

From our viewpoint, the meaning of this result is as follows: while-loops are needed,

because not all computable functions can be computed by using only for-loops.

Acknowledgments. This work was supported in part by the US National Science Foundation grants

HRD-0734825, HRD-1242122, and DUE-0926721.

References

1. Sipser, M. Introduction of the Theory of Computation. Cengage Learning,

Technology, Boston, Massachusetts, USA, 2013.

	University of Texas at El Paso
	DigitalCommons@UTEP
	10-2015

	Towards Making Theory of Computation Course More Understandable and Relevant: Recursive Functions, For-Loops, and While-Loops
	Vladik Kreinovich
	Olga Kosheleva
	Recommended Citation

	

