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TOWARDS MAKING THEORY OF COMPUTATION COURSE MORE 

UNDERSTANDABLE AND RELEVANT: RECURSIVE FUNCTIONS, FOR-LOOPS, AND 

WHILE-LOOPS  

 

Kreinovich, Vladik, PhD, Professor 

Kosheleva, Olga, PhD, Associate Professor 

vladik@utep.edu , olgak@utep.edu 

 

Abstract: In this paper, we show how we can make a theory of computation course more 

understandable and more relevant: namely, we show that a seemingly abstract notion of primitive 

recursion is a direct counterpart to for-loops, while the mu-recursion is an analog of while-loops.  

Keywords: theory of computation, teaching computing, primitive recursion, mu-recursion, 

for-loops, while-loops 

 

Theory of Computation is useful. Theory of computation is very important for computing 

practice; see, e.g., [1]. Many of its general abstract concepts are actively used in practice: e.g., finite 

automata are a useful technique in designing computer hardware and in designing compilers. 

Even negative (non-computability) results are practically useful. Indeed, a natural tendency 

is to write each code so that it can reused later for similar problems -- i.e., to make it as general as 

possible. However, when a problem is generalized too much, it sometimes becomes algorithmically 

unsolvable. It is thus desirable to know when a feasible algorithm is not possible -- so as not to 

waste time on trying to design an impossible general algorithm. 

From this viewpoint, it is desirable that the students not only learn the results of theory of 

computations, but they should also learn the proofs -- so that in the future, when facing similar 

computational problems, they will be able to prove algorithmic impossibility of too broad 

generalizations by appropriately modifying these proofs.  

 

Pedagogical problem. And here lies a pedagogical problem: while the current textbooks explain 

the relevance of the results, the proofs use abstract notions whose relevance to computing is 

unclear.  

For the students to be able to understand and modify the proofs, they should be able to 

understand the motivations behind the steps and the relation between the abstract notions and 

computer practice. 

 

What we do in this paper. In this paper, we explain the relation between the abstract notions and 

computer practice on the example of the first notion with which many graduate theory of 

computation courses start: the notion of a recursive function.  

 

Notion of a recursive function: brief history. This notion -- as well as an auxiliary notion of a 

primitive recursive function -- comes from the 1930s pioneering work of the US mathematician 

Alonzo Church.  

The possibility to clarify these notions stems from the fact that Church's formalism provided 

a way to describe computations -- what programming languages do now, once computers and 

compilers have been invented -- and many of its features strongly influenced the actual 

programming languages (starting with LISP and Scheme).  

In this sense, programming languages and theoretical concepts have a joint origin. Yes, the 

programming languages and the theory formalisms evolved in somewhat different directions. 

However, as we will show, it turns out that it is possible to relate recursive functions to 

programming practice.  
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Specifically, we will show that primitive recursive functions can be interpreted as 

formalizing for-loops, while the notion ofmu-recursion (used to define general recursive functions) 

can be viewed as a natural formalization of while-loops.  

 

How to describe a for-loop in precise terms? Let us start with a simple program for computing 

the power am: 

 

power = 1; 

for(int i = 1; i <= m; i++) 

{power = power * a;} 

 

This is not a precise mathematical notation, because in math, a variable is assumed to have the same 

value in different parts of the equation, but here,  

 

power = power * a;  

 

means that to the variable “power”, we assign a new value: the product of the old value and the 

value a. 

To make the description mathematically precise, we must thus explicitly indicate the 

iteration number at which we consider the value of the variable “power”: initially, before iterations 

start, we have the value power(0), then after the first iteration, we have the value power(1), etc. In 

these terms, the above code takes the following form: 

 

 power(0) = 1 

 power(i + 1) = power(i) * a 

 

The value of the variable “power” also depends on the value of the variable a. If we explicitly 

describe this dependence, we end up with the following description: 

 

 power(a, 0)  = 1 

 power(a, i + 1) = power(i, a) * a 

 

In a general for-loop with parameters a1, …, ak,  in which a variable h changes: 

 we first assign some initial value to the variable h:  

 

h(a1, …, ak, 0) = f(a1, …, ak) 

 

for some expression f(a1, …, ak), and then 

 

 on each iteration, we use the previous value of h, the values of the parameters aj, and the 

number of the iteration I to produce a new value: 

 

h(a1, …, ak, i + 1) = g(a1, …, ak, i, h(a1, …, ak, i)) 

 

for some expression g.  

 

Resulting description of a for-loop. Thus, we arrive at the following formal description of a for-

loop. Let a1, …, ak be a list of parameters. To describe a for-loop in which a variable h changes, we 

need to know: 

 an algorithm f(a1, …, ak) assigning an initial value to h; this value may depend on the 

parameters a1, …, ak; and  



 an algorithm g(a1, …, ak, i, h(a1, …, ak, i)) that describes what is happening inside the loop, 

on each iteration. 

 

Once we have these two algorithms f and g, we can describe a function h computed by the for-loop: 

 

h(a1, …, ak, 0) = f(a1, …, ak);   h(a1, …, ak, i + 1) = g(a1, …, ak, i, h(a1, …, ak, i)); 

 

This is exactly Church's primitive recursion! So, primitive recursion can be described as a natural 

formalization of a for-loop. 

 

Beyond for-loops: a while-loop. In the traditional for-loop, we know beforehand how many 

iterations we make.  

In some algorithms, we do not know beforehand how many iterations we will need. Instead, 

we run iterations xk until the process converges. For example, to compute the square root of a given 

number a, we can use the following iterative algorithm:  

 

 x0 = 1;  xk+1 = (1/2) * (xk + a / xk). 

 

We continue these iterations until the difference between the values of the two consequent iterations 

becomes smaller than a pre-defined threshold t:  

 

 | xk+1 -- xk | < t. 

 

In general, we run a while-loop, which runs until a certain stopping condition P is satisfied. 

So, to describe while-loops, we need to describe the smallest m for which the condition  

 

P(n1, …, nk, m)  

 

holds, where n1, …, nk denote auxiliary parameters.  

This value smallest value  

 

mu m . P(n1, …, nk, m) 

 

is exactly Church's mu-recursion! 

Thus, the basic ideas behind recursive functions are exactly natural formalizations of for- 

and while-loops. 

 

Resulting meaning. We have shown that: 

 primitive recursion corresponds to for-loops, and 

 mu-recursion corresponds to while-loops. 

From this viewpoint, many theoretical results acquire natural practical meaning.  

As an example, let us consider the result that not every computable function is primitive 

recursive. This result is important because it is the first, simplest example of the diagonal 

construction that is later used in many other proofs.  

From our viewpoint, the meaning of this result is as follows: while-loops are needed, 

because not all computable functions can be computed by using only for-loops. 
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