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Abstract—In many practical applications, it turned out to be
efficient to assume that the signal or an image is sparse, i.e.,
that when we decompose it into appropriate basic functions
(e.g., sinusoids or wavelets), most of the coefficients in this
decomposition will be zeros. At present, the empirical efficiency of
sparsity-based techniques remains somewhat a mystery. In this
paper, we show that fuzzy-related techniques can explain this
empirical efficiency. A similar explanation can be obtained by
using probabilistic techniques; this fact increases our confidence
that our explanation is correct.

I. FORMULATION OF THE PROBLEM

Sparsity-based techniques are useful. In many practical
applications, it turned out to be efficient to assume that the
signal or an image is sparse; see, e.g., [1], [2], [3], [4], [5],
[6], [7], [8], [9], [12], [13], [14], [17], [18].

In precise terms, sparsity means that when we decompose
the original signal x(t) (or original image) into appropriate
basic functions e1(t), e2(t), . . . (e.g., sinusoids or wavelets),
i.e., represent this signal (or image) as a linear combination

x(t) =
∞∑
i=1

ai · ei(t), then most of the coefficients ai in this

decomposition will be zeros.
Moreover, it is usually beneficial to select, among all the

signals which are consistent with all the observations (and
will all additional knowledge), the signal for which:

• either the number of non-zero coefficients is the smallest
possible,

• or, more generally, the “weighted number” of such coeffi-
cient is the smallest possible, where the weighted number
is defined as

∑
i:ai ̸=0

wi, for some weights wi > 0.

Comment. Sparsity can be viewed as a particulate case of the
Occam’s razor, according to which we should always select
the simplest model that fits observation.

But why are sparsity-related techniques useful? At present,
the empirical efficiency of sparsity-based techniques remains
somewhat a mystery.

What we do in this paper. In this paper, we show that fuzzy-
related techniques can explain this empirical efficiency.

We also show that a similar explanation can be obtained
by using probabilistic techniques; this fact increases our con-
fidence that our explanation is correct.

II. GENERAL ANALYSIS OF THE PROBLEM

Why do we need data processing in the first place? To
better understand why different techniques are more or less
empirically successful in data processing, it is important to
recall why we need data processing in the first place.

One of the main goals of science and engineering is to
predict the future state of the worlds, and to design gadgets
and strategies that would make the future state of the world
more beneficial for us.

To predict the state of the world, we need to know the
current state of the world, and we need to know how this
state changes in time. In general, the state of the world can
be described by the numerical values of different physical
quantities. In these terms, to predict the future state of the
world means to predict the future values of the corresponding
quantities y1, . . . , ym.

In each practical problem, we are usually interested only in
a small number of quantities. However, to predict the future
values of these quantities, we often need to know the initial
values of some auxiliary quantities as well. For example,
when we launch a spaceship, we are interested in its location
and direction when it leaves the atmosphere, and we are
not directly interested in the future values of the winds on
different heights. However, these winds affect the spaceship’s
trajectory, and, as a result, we need to know their initial values



to correctly predict the desired values y1, . . . , ym. In general,
we need to know n ≫ m initial values x1, . . . , xn to make
the desired prediction.

The relation between xi and yj is often complicated. So, to
predict the values y1, . . . , ym based on the inputs x1, . . . , xn,
we need to apply complex computer-based algorithms, i.e.,
perform data processing.

The above description captures the main reason for data
processing, but it is somewhat oversimplified, since it assumes
that we know the values x1, . . . , xn of the original quantities.
For some quantities, this is indeed true, since we can directly
measure their values. However, there are many other quantities
which are difficult to measure directly. For example, when we
are trying to predict the state of the engine, it is desirable to
know the current temperature inside; however, this temperature
is difficult to measure directly. If we cannot directly measure
a certain value xi, a natural idea is to find easier-to-measure
auxiliary quantities z1, . . . , zp which are related to xi by
a known dependence, and then use this known dependence
to reconstruct xi. The corresponding computations may be
complex, so we have another reason why data processing is
needed.

Before we perform data processing, we first need to know
which inputs are relevant. In general, in data processing,
we estimate the value of the desired quantity yj based on the
values of the known quantities x1, . . . , xn that describe the
current state of the world.

In principle, all possible quantities x1, . . . , xN that describe
the current state of the world could be important for predicting
some future quantities. However, for each specific quantity yj ,
usually, only a few of the quantities xi are actually useful.

So, before we decide how to transform the inputs xi into
the desired output, we first need to check which inputs are
actually useful. This checking is a very important stage of data
processing – if we do not filter out unnecessary quantities xi,
we will waste time and resources measuring and processing
these unnecessary quantities.

III. ANALYSIS OF THE PROBLEM: LET US USE
FUZZY-RELATED TECHNIQUES

Description of our problem in natural-language terms.
We are interested in a reconstructing a signal or image

x(t) =
∞∑
i=1

ai · ei(t) based on the measurement results and

prior knowledge. In this formula, the basis functions ei(t) are
known, and the coefficients ai need to be determined. Based on
measurement results and prior knowledge, we need to estimate
the values ai.

This reconstruction problem is, of course, a particular case
of a general data processing problem. As we have mentioned in
the previous section, a natural way to approach data processing
problems in general is that:

• first, we find out which quantities are important for this
particular problem, and

• then, we find the values of the important quantities.

In the above data processing problem, the quantities are the
coefficients ai. The quantity ai is irrelevant if it does not affect
the resulting signal, i.e., if ai = 0. When ai ̸= 0, this means

that this quantity affects the resulting signal x(t) =
∞∑
i=1

ai·ei(t)
and is, therefore, relevant. Thus, for our problem, the above
two-stage data processing process takes the following form:

• first, we decided which values ai are zeros and which are
non-zeros, and

• then, we use an appropriate data processing algorithm to
estimate the numerical values of non-zero coefficients ai.

On the first stage, we can make several different decisions,
all of which are consistent with the measurements and with
the prior knowledge. For example, if in one decision, we take
ai = 0, then taking ai to be very small but still different from
0 will still make this slightly modified signal consistent with
all the measurement results. Out of all such possible decisions,
we need to select the most reasonable one.

“Reasonable” is not a precise term. So, to be able to solve
the problem, we need to translate this imprecise natural-
language description into precise terms.

Fuzzy techniques can translate this natural-language de-
scription into a precisely formulated problem. In order
to translate the above natural-language problem into precise
terms, it is reasonable to use techniques specifically designed
for such translations – namely, the techniques of fuzzy logic;
see, e.g., [11], [16], [19].

In fuzzy logic, the meaning of each imprecise (“fuzzy”)
natural-language statement P (x) about a quantity x is de-
scribed by assigning, to each possible value x, the degree
µP (x) ∈ [0, 1] to which we are sure that x satisfies this
property P . For simple properties, we can determine these
values, e.g., by simply asking the experts to mark, on a scale
from 0 to 10, how much they are sure that P holds for x; if
an expert marks the number 7, we take µP (x) = 7/10.

This can be done for properties that depend on a single
quantity. However, for properties like “reasonable”, that de-
pend on many values a1, . . . , an, . . ., it is not feasible to
ask the expert for the degrees corresponding to all possible
combinations of the values ai. In such situations, we can use
the fact that from the commonsense viewpoint, a sequence
(a1, a2, . . .) is reasonable if and only if a1 is reasonable and
a2 is reasonable, and . . . For each of the quantities ai, we can
elicit, from the expert, degree to which different values of ai
are reasonable.

Since this is all the information that we have, we need
to estimate the degree to which a1 is reasonable and a2 is
reasonable, and . . ., based on the degrees to which a1 is
reasonable, to which a2 is reasonable, etc. In other words,
we know the degrees of belief a = d(A) and b = d(B) in
statements A and B, and we need to estimate the degree of
belief in the composite statement A&B.

It is worth mentioning that this estimate cannot be always
exact, because our degree of belief in a composite statement
A&B depends not only on our degrees of belief in A and B,



it also depends on the (usually unknown) dependence between
A and B. Let us give an example.

• If A is “coin falls heads”, and B is “coin falls tails”, then
for a fair coin, degrees a and b are equal: a = b. Here,
A&B is impossible, so our degree of belief in A&B is
zero: d(A&B) = 0.

• However, if we take A′ = B′ = A, then A′ &B′ is
simply equivalent to A, so we still have a′ = b′ = a but
this time d(A′ &B′) = a > 0.

In these two cases, d(A′) = d(A), d(B′) = d(B), but
d(A&B) ̸= d(A′ &B′).

In general, let f&(a, b) be the estimate for d(A&B) based
on the known values a = d(A) and b = d(B). The correspond-
ing function f&(a, b) must satisfy some reasonable properties:
e.g.,

• since A&B means the same as B&A, this operation
must be commutative;

• since (A&B)&C is equivalent to A&(B&C), this
operation must be associative, etc.

Operations with these properties are known as “and”-
operations, or, alternatively, t-norms.

Let us apply an appropriate t-norm to our problem. In our
case, for each variable ai, we only need to find the degrees
of belief in two situations: that ai = 0 and that ai ̸= 0. Let
us denote the degree to which it is reasonable to believe that
ai = 0 by d=i , and the degree to which it is reasonable to
believe that ai ̸= 0 by d ̸=i . Thus, we arrive at the following
formulation of the first stage of data processing.

Resulting precise formulation of the first stage of data
processing in precise terms. Our goal is to select a sequence
(ε1, ε2, . . .), where each εi is equal either to = or to ̸=. If εi
is =, this means that we have decided that ai = 0, and if εi is
̸=, this means that we have decided that ai ̸= 0.

For each such sequence ε = (ε1, ε2, . . .), we can determine
the degree d(ε) to which this sequence is reasonable, by
applying the selected t-norm f&(a, b) to the degrees dεii to
which we belief that each choice εi is reasonable:

d(ε) = f&(d
ε1
1 , dε22 , . . .).

Out of all sequences ε which are consistent with the
measurements and with the prior knowledge, we must select
the one for which this degree of belief is the largest possible.

An additional fact that we can use. If we have no information
about the signal, i.e., in other words, if there is no evidence
that there is a non-zero signal, then the most reasonable choice
is to select x(t) = 0, i.e., to select a signal for which a1 =
a2 = . . . = 0.

In other words, if we do not have any way to impose
restrictions on the sequence ε, then the most reasonable should
be the sequence (=,=, . . .).

Similarly, the worst reasonable is the sequence in which we
take all the values into account, i.e., the sequence ( ̸=, . . . , ̸=).

A comment about t-norms. In principle, there are many
possible t-norms. However, it is known (see, e.g., [15]) that
an arbitrary continuous t-norm can be approximated, with an
arbitrary accuracy, by an Archimedean t-norm, i.e., by a t-
norm of the type f&(a, b) = f−1(f(a) · f(b)), for some
continuous strictly increasing function f(x). Thus, without
losing generality, we can assume that the actual t-norm is
Archimedean.

Now, we are ready to formulate and solve the corresponding
problem.

IV. DEFINITIONS AND THE MAIN RESULT:
FUZZY-RELATED TECHNIQUES EXPLAIN SPARSITY

Definition 1.
• By a t-norm, we means a function f& : [0, 1] × [0, 1] →

[0, 1] of the form f&(a, b) = f−1(f(a) · f(b)), where
f : [0, 1] → [0, 1] is a continuous strictly increasing
function for which f(0) = 0 and f(1) = 1.

• By a sequence, we mean a sequence ε = (ε1, . . . , εN ),
where each symbol εi is equal either to = or to ̸=.

• Let d= = (d=1 , . . . , d
=
N ) and d̸= = (d̸=1 , . . . , d

̸=
N ) be

sequences of real numbers from the interval [0, 1]. For
each sequence ε, we define its degree of reasonableness
as d(ε)

def
= f&(d

ε1
1 , . . . , dεNN ).

• We say that the sequences d= and d̸= properly describe
reasonableness if the following two conditions are satis-
fied:

– the sequence ε=
def
= (=, . . . ,=) is more reasonable

than all others, i.e., d(ε=) > d(ε) for all ε ̸= ε=,
and

– the sequence ε ̸=
def
= (̸=, . . . , ̸=) is less reasonable

than all others, i.e., d(ε ̸=) < d(ε) for all ε ̸= ε̸=.
• For each set S of sequences, we say that a sequence ε ∈ S

is the most reasonable if its degrees of reasonableness is
the largest possible, i.e., if d(ε) = max

ε′∈S
d(ε′).

Proposition 1. Let us assume that the sequences d= and d ̸=

properly describe reasonableness. Then, there exist weights
wi > 0 for which, within each set S, a sequence ε ∈ S is
the most reasonable if and only if for this sequence, the sum∑
i:εi≠=

wi is the smallest possible.

Discussion. In other words, a sequence is the most reasonable
if and only if the sum

∑
i:ai ̸=p

wi attains the smallest possible

value. Thus, fuzzy-based techniques indeed naturally lead to
the sparsity condition.

Proof. By definition of the t-norm, we have

d(ε) = f&(d
ε1
1 , . . . , dεNN ) = f−1(f(dε11 ) · . . . · f(dεNN )),

i.e.,

d(ε) = f&(d
ε1
1 , . . . , dεNN ) = f−1(eε11 · . . . · eεNN ),

where we denoted eεii
def
= f(dεii ).

Since the continuous function f(x) is strictly increasing, its
inverse f−1(x) is also strictly increasing. Thus, maximizing



d(ε) is equivalent to maximizing the function e(ε)
def
= f(d(ε)).

This function has the form

e(ε) = f(d(ε)) = f(f−1(eε11 · . . . · eεNN )),

i.e., the form
e(ε) = eε11 · . . . · eεNN .

From the condition that the sequences d= and d ̸= properly
describe reasonableness, it follows, in particular, that for each
i, we have d(ε=) > d(ε(i)= ), where

ε(i)=
def
= (=, . . . ,=, ̸= (on i-th place),=, . . . ,=).

This inequality is equivalent to e(ε=) > e(ε(i)= ).
Since the values e(ε) are simply the products, we thus

conclude that
N∏
j=1

e=j >

∏
j ̸=i

e=j

 · e ̸=i .

The values e=j corresponding to j ̸= i cannot be equal
to 0, since otherwise, both products would be equal to 0s.
Thus, these values are non-zeros. Dividing both sides of the
inequality by all these values, we conclude that e=i > e ̸=i .

Similarly, from the condition that the sequences d= and d̸=

properly describe reasonableness, it also follows, in particular,
that for each i, we have d(ε ̸=) < d(ε

(i)
̸= ), where

ε
(i)
̸= =

def
= ( ̸=, . . . , ̸=,= (on i-th place), ̸=, . . . , ̸=).

This inequality is equivalent to e(ε ̸=) > e(ε
(i)
̸= ).

Since the values e(ε) are simply the products, we thus
conclude that

N∏
j=1

e ̸=j <

∏
j ̸=i

e ̸=j

 · e=i .

The values e ̸=j corresponding to j ̸= i cannot be equal to 0,
since otherwise, both products would be equal to 0s.

Thus, for all i, we have e=i > e ̸=i > 0.

Now, in general, maximizing the product e(ε) =
N∏
i=1

dεii

is equivalent to maximizing the same product divided by a

constant c
def
=

N∏
i=1

d ̸=i . The ratio
e(ε)

c
can be equivalently

reformulated as
e(ε)

c
=

∏
i:εi= ̸=

e=i

e ̸=i
.

Since logarithm is a strictly increasing function, maximizing
this product is, in its turn, equivalent to maximizing its
logarithm, i.e., the value

L(ε)
def
= ln

(
e(ε)

c

)
=
∑

i:εi= ̸=

wi,

where we denoted wi
def
= ln

(
e=i

e ̸=i

)
. Since e=i > e ̸=i > 0, we

have
e=i

e ̸=i
> 1 and thus, wi > 0. The proposition is proven.

V. A SIMILAR DERIVATION CAN BE OBTAINED IN THE
PROBABILISTIC CASE

Towards a probabilistic reformulation of the problem. In
the probabilistic approach, reasonableness can be described by
assigning a prior probability p(ε) to each possible sequences
ε. In this case, out of each set of sequences, we should select
the most probable one, i.e., the one with the largest value of
the prior probability.

Let p=i be the prior probability that ai = 0, and let p̸=i =
1 − p=i be the probability that ai ̸= 0. A priori we do not
know the relation between the values εi and εj corresponding
to different coefficients i ̸= j, so it makes sense to assume that
the corresponding random variables εi and εj are independent.

This assumption is in perfect agreement with the maximum
entropy idea (also known as the Laplace’s indeterminacy prin-
ciple), according to which, out of all probability distributions
which are consistent with our observations, we should select
the one for which the entropy −

∑
pi · ln(pi) is the largest

possible; see, e.g., [10]. Indeed, if we only know marginal
distributions, then the maximum entropy idea implies that,
according to the joint distribution, all the random variables
are independent.

Under this assumption, p(ε) =
N∏
i=1

pεii . Thus, we arrive at

the following definition.

Definition 2.
• Let p= = (p=1 , . . . , p

=
N ) be a sequence of real numbers

from the interval [0, 1], and let p̸=i
def
= 1 − p=i . For each

sequence ε, we define its prior probability as

p(ε)
def
=

N∏
i=1

pεii .

• We say that the sequence p= properly describes reason-
ableness if the following two conditions are satisfied:

– the sequence ε=
def
= (=, . . . ,=) is more probable

than all others, i.e., p(ε=) > p(ε) for all ε ̸= ε=,
and

– the sequence ε̸=
def
= ( ̸=, . . . , ̸=) is less probable than

all others, i.e., p(ε̸=) < p(ε) for all ε ̸= ε̸=.
• For each set S of sequences, we say that a sequence

ε ∈ S is the most probable if its prior probability is the
largest possible, i.e., if p(ε) = max

ε′∈S
p(ε′).

Proposition 2. Let us assume that the sequence p= properly
describes reasonableness. Then, there exist weights wi > 0
for which, within each set S, a sequence ε ∈ S is the most
probable if and only if for this sequence, the sum

∑
i:εi= ̸=

wi is

the smallest possible.

Discussion. In other words, probabilistic techniques also lead
to the sparsity condition.

Proof is similar to the Proof of Proposition 1.



Comments.
• The fact that the probabilistic approach leads to the

same conclusion as the fuzzy approach makes us more
confident that our justification of sparsity is valid.

• The comparison of the above two derivations shows an
important advantage of fuzzy-based approach in situa-
tions like this, when we have a large amount of uncer-
tainty:

– the probability-based result is based on the assump-
tion of independence, while

– the fuzzy-based result can allow different types of
dependence – as described by different t-norms.

Remaining open questions. In this paper, we showed that
fuzzy techniques help explain empirical efficiency of sparsity-
based data- and image-processing algorithms. This fact makes
us hopeful that similar fuzzy-based ideas can help explain not
just the general idea behind such algorithms, but also empirical
recommendations for selecting specific parameters of sparsity-
based algorithms.
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