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Abstract

In many practical situations, we do not know the shape of the corre-
sponding probability distributions and therefore, we need to use robust
statistical techniques, i.e., techniques that are applicable to all possible
distributions. Empirically, it turns out the the most efficient robust ver-
sion of sample variance is the average value of the p-th powers of the
deviations |xi − â| from the (estimated) mean â. In this paper, we use
natural symmetries to provide a theoretical explanation for this empirical
success, and to show how this optimal robust version of sample variance
can be naturally extended to a robust version of sample covariance.

1 Formulation of the Problem

Need to determine a parameter: traditional case. Often, we observe a
sample of several instances x1, . . . , xn of a random variable X.

In many practical situations, we know that the random variable X has a
distribution with the probability density function (pdf) ρ(x) = ρ0(x−a), where
ρ0(x) is a known function, and a is an unknown parameter. For example, X
may be the measurement result, which can be represented as X = a+X0, where
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a is the actual (unknown) value of the corresponding quantity, and X0 is the
measurement error with a known pdf ρ0(x).

In such situations, to estimate the value a based on the observations
x1, . . . , xn, we can use, e.g., the maximum likelihood method, i.e., find the
value a for which the product

L
def
=

n∏
i=1

ρ(xi) =
n∏

i=1

ρ0(xi − a)

is the largest possible; see, e.g., [21].
The corresponding optimization problem is equivalent to minimizing the sum

− ln(L) =
∑

ψ0(xi − a),

where ψ0(x)
def
= − ln(ρ0(x)). This is the equivalent form most frequently used for

optimization, since most optimization techniques involve differentiation of the
objective function, and differentiating the sum is much easier than differentiating
the product – we get fewer terms in the expression for the derivative.

In particular, in the frequent case when the distribution ρ0(x) is Gaussian,
i.e., when

ρ0(x) =
1√

2π · σ
· exp

(
− x20
2σ2

)
with a known standard deviation σ, the maximum likelihood method L→ max
is equivalent to − ln(L) → min and is, thus, equivalent to the Least Square
method

n∑
i=1

(xi − a)2 → min
a
.

For this problem, the Least Squares method results in the known estimate

â =
x1 + . . .+ xn

n
.

Once we have found the estimate â for the parameter a, we can then estimate
the variance as

V̂ =
1

n
·

n∑
i=1

(xi − â)2.

This value is proportional to X2, so, as a measure of deviation of the random

variable X from â, we can take σ̂
def
=

√
V̂ .

If we have two random variables X and Y , with parameters a and b, then
their covariance C can be estimated, similarly, as

Ĉ =
1

n
·

n∑
i=1

(xi − â) · (yi − b̂).
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Gaussian distributions are ubiquitous. Their ubiquity comes from the fact
that, according to the Central Limit Theorem, the distribution of the sum of a
large number of independent small random components is close to Gaussian [21].
Not surprisingly, the empirical analysis of measuring instruments shows that
for about 60% of them, the corresponding probability distribution is close to
Gaussian [17, 18]. Because of this ubiquity, the Gaussian-motivated formulas
are the ones (and often the only ones) that engineering and science students
learn in their studies, and these formulas are the ones most frequently used in
practice.

Need for robust estimations. In many practical situations, we do not know
the shape ρ0(x) of the corresponding probability distribution. In such situations,
several different probability distributions are consistent with our knowledge.

Sometimes, in such situations, practitioners use Gaussian-motivated estima-
tors – since, as we have mentioned, these are the only estimators that these
practitioners know. The results are often misleading, even for distributions
which are rather close to Gaussian.

As an example, let us consider the case when 99% percent of the values
X are normally distributed with mean 0 and standard deviation 0.1, but 1%
represent outliers with standard deviation 1000. Then, with one such outlier of
size 1000 in a sample of size 100, the arithmetic average â of this sample will
be close to 10 – very far away from the actual 0 mean. The resulting estimate
V̂ for the variance will also be very misleading.

The results are also misleading for the case of heavy-tailed distributions, a
very typical situation in econometrics (see, e.g., [3, 4, 5, 11, 13, 15, 22, 23]) and
in many other application areas [2, 7, 12, 14, 20]. For heavy-tailed distributions,
variance is infinite. So, due to the Large Numbers Theorem, the corresponding
variance V̂ tends to infinity as the sample size n grows – and thus, does not
provide us with any meaningful measure of how far the random variable deviates
from â.

To cover such cases, we need to use techniques which are applicable not only
for one of the possible distributions, but rather for all possible distributions.
Such techniques are known as robust; see, e.g., [8].

The classical example of a robust estimate is the median, that corresponds

to minimizing the sum
n∑

i=1

|xi − a|. The resulting smallest value of this sum can

serve – after dividing by n – as a robust estimate of how far the random variable
deviates from â:

V̂ =
1

n
·

n∑
i=1

|xi − â|.

Many other robust techniques have been proposed.

Bayesian approach to robust estimations: main ideas. The main idea
behind the Bayesian approach is that in situations in which several different
alternatives are consistent with our knowledge, we select a prior probability
distribution on the set of all possible alternatives.
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In our problem, alternatives are different probability distributions.

• In some practical situations – e.g., when we estimate variance-type charac-
teristics – we are interested in the properties of a single random variable.
In such situations, the unknown probability distribution ρ(z) corresponds
to a single variable z.

• In other situations – e.g., when we estimate covariance-type characteristics
– we are interested in the relation between two random variables. In such
situation, the unknown probability distribution corresponds ρ(z) describes
the joint distribution of a pair z = (x, y) of random variables.

• In general, we are interested in the probability distribution ρ(z) over some
tuples z.

For our problem, the Bayesian approach means that we select a prior distri-
bution on the set of all possible probability distributions ρ(z).

We want to estimate some characteristic c(ρ) of the distribution ρ. To com-
pute such an estimate, we can use a sample z1, . . . , zn taken from the (un-
known) probability distribution ρ(z). Let us denote the corresponding estimate
by s(z1, . . . , zn).

Which function s(z1, . . . , zn) should we choose? According to decision mak-
ing theory (see, e.g., [6, 10, 16, 19]), a rational decision maker always maximizes
the expected value of the objective appropriate function called utility. In our
case, the utility function u(s, c) depends on how close the estimate s(z1, . . . , zn)
is to the actual value c(ρ) of the desired characteristic. For each probability
distribution ρ, the expected value of the utility is equal to

E(ρ0) =

∫
u(s(z1, . . . , zn), c(ρ)) · ρ(z1) · . . . · ρ(zn) dz1 . . . dzn,

and the overall expected utility E(s) can be obtained if we average the above
utility E(ρ) over all possible distributions ρ – using the prior distribution on
the set of all possible distributions ρ(z):

E(s) =

∫
E(ρ) dρ =∫

dρ

∫
u(s(z1, . . . , zn), c(ρ)) · ρ(z1) · . . . · ρ(zn) dz1 . . . dzn.

We should select the function s(z1, . . . , zn) for which the expected utility E(s)
is the largest possible.

Bayesian approach to robust estimations: main challenges. How do we
select a prior distribution? In some cases, we can extract the prior probabilities
from the expert – for example, from the bets that the expert is willing to pay
when betting on one alternative against another one. However, in practice, such
situations are rare, and so, we face a challenge of selecting the appropriate prior
distribution.
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For different priors, we get different estimates, some are empirically better,
some empirically worse. It is known that under certain reasonable assumptions,
as the sample size increases, the influence of the prior decreases – in the sense
that the posterior distribution tends to the actual one. However, for finite
samples, the difference can be drastic.

Selecting an appropriate prior is one of the main challenges of the Bayesian
approach. There are many known ways to make this selection, both empirical
and theory-based. In the empirical approach, we select a prior that leads to
best results. In the theory-based approaches:

• we can select a prior that has the largest possible value of the entropy
(see, e.g., [9]), or

• we can select the prior which is invariant with respect to corresponding
symmetries, etc.

Of course, whatever theoretical approach we use, we want to make sure that
empirically, the resulting method works well. Thus, to select an estimate in our
case, let us recall the available empirical evidence.

Robust estimations: empirical data. Most known robust methods come
from selecting among the methods optimal for some distribution ψ0(x), and

thus, have the form
n∑

i=1

ψ0(xi − a) → min
a

for an appropriate function ψ0(x).

These are the methods that we will analyze in this paper.
Empirically, the most efficient techniques are the so-called ℓp-techniques in

which we minimize the sum
n∑

i=1

|xi − a|p; see, e.g., [8]. A natural analogue of

the sample variance is then the value

V̂ =
n∑

i=1

|xi − â|p.

This value is proportional to Xp, so we can estimate the deviation of the random
variable x from â by the value σ̂ = (V̂ )1/p.

Remaining problems. While the above estimate â (and the related estimates
V̂ and σ̂) work well in many practical situations, there is no convincing the-
oretical explanation for this success. As a result, it is not clear whether the
corresponding function ψ0(x) = |x|p is indeed the best – or it is simply empiri-
cally the best among the few functions that were tried, and a different function
ψ0(x) may be even better.

Another problem is that while we have a good robust version of the sample
variance, it is not clear how to transform it into a robust version of sample
covariance – and covariance is an important statistical characteristics describing
the relation between two random variables.

What we do in this paper. In this paper, we show that both problems can
be resolved if we apply an idea which frequently used in statistics – namely, if
we use natural symmetries.
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Comment. Based on the above analysis, a natural idea would be:

• to use symmetries for selecting a prior, and then

• to use the resulting prior to come up with an appropriate robust versions
of sample variance and sample covariance.

What we show in this paper is that for our specific problem, we can simplify this
idea and use symmetries to directly derive the corresponding robust functions
s(z1, . . . , zn).

2 Natural Symmetries: Main Idea

What are natural symmetries. Numerical values xi of physical quantities
depend on the choice of a measuring unit. If instead of the original measuring
unit, we use a new unit which is λ times smaller, then all the numerical values
will be multiplied by λ.

For example, if we use centimeters instead of meters, with λ = 100, then a
height of x = 1.7 m becomes xnew = λ · x = 170 cm.

In econometric problems, where money-valued quantities like price, income,
profit, etc., are important, similarly, the numerical values of the corresponding
money quantities depend on the choice of the monetary unit: the salary in
dollars has a different numerical value when translated into Euros.

The numerical value of a quantity also depends on the starting point: e.g.,
for C and F temperature scales, the starting points are different. However, when
we consider the different xi − a between two values of the same quantity, this
difference disappears, and the only natural symmetry is scaling x→ λ · x.

Natural symmetries for utilities. Econometrics is about human economic
behavior. As we have mentioned, according to decision theory, rational human
behavior can be described in terms of an appropriate utility function.

The utility function can be determined by observing the person’s decisions.
It is known that this determination is not unique: indeed, if we apply a linear
transformation u→ unew = λ·u+ca, with λ > 0, to the original utility function,
then the expected value of the re-scaled utility Enew(s) can be obtained from the
expected value E(s) of the original utility by the same linear transformation:
Enew(s) = λ ·E(s) + ca. Linear transformation with λ > 0 preserves the order:
if we had E(s) > E(s′), then we have Enew(s) > Enew(s

′) and vice versa.
Thus the order between different alternatives s and s′ remains the same – and
therefore, both the original utility function u and the re-scaled function unew
lead to the same decisions. Thus, the utility is determined uniquely modulo a
linear transformation u→ unew = λ·u+ca. So, when we describe the differences
xi − a, it also makes sense to consider scalings.

In general, there is no easy way to compare individual utilities; the utility of
each person can be independently re-scaled. Thus, if we have several differences
xi−a and yi− b, then it makes sense to consider re-scalings xi−a→ λ · (xi−a)
and yi − b→ µ · (yi − b) for different values λ and µ.
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3 Symmetry-Invariance: From Idea to Precise
Definitions

What is symmetry-invariance. We select the value a for which the sum
n∑

i=1

ψ0(∆i) is the smallest possible, where we denoted ∆i
def
= xi − a. Thus, we

compare the two tuples ∆ = (∆1, . . . ,∆n) and ∆′ = (∆′
1, . . . ,∆

′
n) by the value

of the corresponding sum.
If we apply scaling to both tuples ∆ and ∆′, we get different numerical

values ∆i and ∆′
i. However, these new numerical values describe the same two

situations as the original values ∆i and ∆′
i. It is therefore reasonable to require

that the result of this comparison be the same whether we apply the scaling or
not, i.e., whether we use the old or the new units to describe the corresponding
quantities.

How to describe symmetry-invariance in precise terms. For n = 2,
symmetry-invariance means, in particular, that if the two tuples ∆ and ∆′ are
equivalent, i.e., if

ψ0(∆1) + ψ0(∆2) = ψ0(∆
′
1) + ψ0(∆

′
2),

then they should remain equivalent after re-scaling, i.e., we should have

ψ0(λ ·∆1) + ψ0(λ ·∆2) = ψ0(λ ·∆′
1) + ψ0(λ ·∆′

2).

Monotonicity. If the random variable is located at the value a with probability
1, i.e., if all the values xi are equal to a, then the minimization of the sum
n∑

i=1

|xi − a| should result in â = a.

In mathematical terms, the tuple (0, . . . , 0) (which corresponds to â = a)
should have a smaller value of the sum than a tuple (c, . . . , c) corresponding to
any other constant c = a− â.

This requirement implies that n · ψ0(0) < n · ψ0(c), i.e., that ψ0(0) < ψ0(c)
for all c ̸= 0.

Differentiability. For simplicity of analysis, we will also assume that the
function ψ0(x) is twice differentiable for x > 0.

We can make this assumption without losing generality, since any continuous
function can be approximated, with any given accuracy on any given interval,
by a twice-differentiable function – for example, by a polynomial.

Sign-invariance. In many physical situations, the sign of the quantity is also
chosen arbitrarily: e.g., traditionally we consider the flow of electrons as a
negative current, but we could have as well treat it as a positive one.

Because of this, it is reasonable to require that the value of the minimized
function not change if we simply change the sign, i.e., that we should have
ψ0(−x) = ψ0(x) – i.e., that the function ψ0(x) is even.

Now, we are ready for formulate our first result.
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4 First Result: Explaining Empirically Success
of Robust ℓp Techniques

Definition 1. We say that an even function ρ0(x) which is twice differentiable
for x > 0 is scale-invariant if for every ∆1, ∆2, and λ > 0, if

ψ0(∆1) + ψ0(∆2) = ψ0(∆
′
1) + ψ0(∆

′
2),

then
ψ0(λ ·∆1) + ψ0(λ ·∆2) = ψ0(λ ·∆′

1) + ψ0(λ ·∆′
2).

Definition 2. We say that a scale-invariant function ρ0(x) is monotonic if
ψ0(0) < ψ0(c) for all c ̸= 0.

Definition 3. We say that two functions ψ0(x) and ψ(x) are equivalent if for

all possible tuples ∆ and ∆′, the condition
n∑

i=1

ψ0(∆i) ≥
n∑

i=1

ψ0(∆
′
i) is equivalent

to
n∑

i=1

ψ(∆i) ≥
n∑

i=1

ψ(∆′
i).

Proposition 1. Every monotonic scale-invariant function ψ0(x) is equivalent
to either |x|p for some p > 0 or to ln(|x|).

Comment. The function ψ0(x) = ln(x) can be viewed as a limit of xp when
p→ 0. Indeed, in this case,

xp = exp(p · ln(x)) = 1 + p · ln(x) + o(p).

Thus, for small p, minimizing the sum
n∑

i=1

|xi|p is equivalent to minimizing the

sum of the logarithms.
If we impose an additional condition that the function ψ0(x) is continuous

for all x, then we only get |x|p.

Proof. Let us consider the case when ∆′
1 = ∆1 + δ and ∆′

2 = ∆2 + k · δ for
some small δ and for an appropriate value k. In this case,

ψ0(∆
′
1) = ψ0(∆1 + δ) = ψ0(∆1) + δ · ψ′

0(∆1) + o(δ),

where ψ′
0(x) denotes the derivative of the function ψ0(x). Similarly,

ψ0(∆
′
2) = ψ0(∆2 + k · δ) = ψ0(∆2) + δ · k · ψ′

0(∆2) + o(δ).

Thus, the original equality ψ0(∆1)+ψ0(∆2) = ψ0(∆
′
1)+ψ0(∆

′
2) takes the form

ψ′
0(∆1) · δ + ψ′

0(∆2) · k · δ + o(δ) = 0. Dividing both sides by δ, we get

ψ0(∆1) + k · ψ′(∆2) + o(1) = 0.
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Thus, when δ → 0, this equality holds for

k = −ψ
′
0(∆1)

ψ′
0(∆2)

.

Similarly, the equality

ψ0(λ ·∆1) + ψ0(λ ·∆2) = ψ0(λ ·∆′
1) + ψ0(λ ·∆′

2),

which is obtained after λ-rescaling, implies that

k = −ψ
′
0(λ ·∆1)

ψ′
0(λ ·∆2)

,

for the same value k. Therefore, for every ∆1, ∆2, and λ, we have

ψ′
0(λ ·∆1)

ψ′
0(λ ·∆2)

=
ψ′
0(∆1)

ψ′
0(∆2)

.

This equality can be represented in the following equivalent form:

ψ′
0(λ ·∆1)

ψ′
0(∆1)

=
ψ′
0(λ ·∆2)

ψ′
0(∆2)

.

This means that the ratio
ψ′
0(λ ·∆)

ψ′
0(∆)

does not depend on ∆, it only depends on λ. Let us denote this ration by r(λ).
From

ψ′
0(λ ·∆)

ψ′
0(∆)

= r(λ),

we conclude that
ψ′
0(λ ·∆) = r(λ) · ψ′

0(∆). (1)

Let us consider the case when we first re-scale by λ2 and then by λ1. In this
case, we have

ψ′
0(λ2 ·∆) = r(λ2) · ψ′

0(∆),

and thus,

ψ′
0(λ1 · λ2 ·∆) = r(λ1) · ψ′

0(λ2 ·∆) = r(λ1) · r(λ2) · ψ′
0(∆). (2)

On the other hand, the same result can be obtained if we re-scale by λ1 · λ2:

ψ′
0(λ1 · λ2 ·∆) = r(λ1 · λ2) · ψ′

0(∆). (3)

Since the left-hand sides of the last two formulas (2) and (3) coincide, the right-
hand sides must be equal as well, so we have

r(λ1 · λ2) = r(λ1) · r(λ2). (4)
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The function r(λ) is a ratio of two differentiable functions and is, thus, differ-
entiable itself. It is known (see, e.g., [1]) that all differentiable functions that
satisfy the above equality (4) have the form r(λ) = λq for some q. Substituting
this expression and ∆ = 1 into the formula (1), we conclude that ψ′

0(x) = C1 ·xp

for x > 0, where C1
def
= ψ′

0(1).
Integrating, for q ̸= −1, we get ψ0(x) = C ·xp+c1 for p = q+1 and some C,

and for q = −1, we get ψ0(x) = C1 · ln(x) + c1. The fact that ψ0(x) is an even
function enables us to get the values for x < 0 as ψ0(x) = ψ0(|x|). Monotonicity
implies that C > 0 and C1 > 0, and thus, these functions are indeed equivalent
to |x|p and ln(|x|).

The proposition is proven.

5 Second Result: Invariant Generalizations of
Sample Covariance

Discussion. Let us consider expressions of the type
n∑

i=1

f(ai, bi), where ai
def
=

xi − a and bi
def
= yi − b.

Similar to the standard covariance, we want the expression f(x, y) to change
sign when we change the sign of either x or y: f(−x, y) = f(x,−y) = −f(x, y).
We also want this expression to be symmetric: f(x, y) = f(y, x).

And, of course, we want the resulting comparison to be scale-invariant, i.e.,

if
n∑

i=1

f(ai, bi) =
n∑

i=1

f(a′i, b
′
i), then

n∑
i=1

f(λ·ai, µ·bi) =
n∑

i=1

f(λ·a′i, µ·b′i). Similarly

to the previous section, in the following definition, we will use the n = 2 case of
this requirement.

When xi = yi, we want the sample covariance to be positive. Thus, we
arrive at the following definitions.

Definition 4. We say that a function f(x, y) is a covariance function if it is
continuous, twice differentiable for x ̸= 0 and y ̸= 0, and satisfies the following
conditions for all x and y:

• f(x, y) = f(y, x),

• f(−x, y) = f(x,−y) = −f(x, y), and

• f(x, x) > 0 for x ̸= 0.

Definition 5. We say that a covariance function f(x, y) is scale-invariant if
for every combination of ai, bi, λ > 0, and µ > 0, the equality

f(a1, b1) + f(a2, b2) = f(a′1, b
′
1) + f(a′2, b

′
2)

implies that

f(λ · a1, µ · b1) + f(λ · a2, µ · b2) = f(λ · a′1, µ · b′1) + f(λ · a′2, µ · b′2).
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Proposition 2. Every scale-invariant covariance function has the form
f(x, y) = sign(x) · sign(y) · (|x| · |y|)q for some real number q > 0.

Discussion. Thus, as a robust version of estimating covariance, we can take
the expression

Ĉ =
1

n
·

n∑
i=1

sign(xi) · sign(yi) · (|xi| · |yi|)q.

If we additionally require that for yi = xi, the resulting version of sample

covariance coincides with the above invariant version of sample variance
1

n
·

n∑
i=1

|xi|p, then we conclude that q = p/2. In particular, for the median case

p = 1, we should thus consider

Ĉ =
1

n
·

n∑
i=1

sign(xi) · sign(yi) ·
√
|xi| · |yi|.

Comment. Please note that while the original covariance function f(x, y) =
x · y is associative, the new function is, in general, not associative. Indeed, for
x, y, z > 0, we have

f(f(x, y), z) = f((x · y)q, z) = ((x · y)q · z)q = xq
2

· yq
2

· zq,

while
f(x, f(y, z)) = f(x, (y · z)q) = (x · (y · z)q)q = xq · yy

2

· zq
2

,

i.e., a different expression.
However, we still have some weaker form of associativity: namely, for every

four values x, y, z, and t, the value f(f(x, y), f(z, t)) does not change if we
permute these four values.

Proof of Proposition 2. Let us first consider transformations with µ = 1,
i.e., transformations that do not change y. Then, for a fixed y > 0, arguments
provided in the proof of Proposition 1 imply that for x > 0, we have f(x, y) =
C(y) ·xp(y)+c1(y), where the parameters C, p, and c1 are, in general, dependent
on y. By continuity, we get a similar expression for all x ≥ 0.

Please note that since we explicitly required that the function f(x, y) be
continuous for all x and y, we no longer have the logarithm option.

The requirement that f(−x, y) = −f(x, y) implies that f(0, y) = 0, so
c1(y) = 0 and f(x, y) = C(y) · xp(y). By taking logarithm of both sides, we
conclude that

ln(f(x, y)) = p(y) · ln(x) + ln(C(y)),

i.e., that ln(f(x, y)) is a linear function of ln(x).
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Similarly, we can conclude that ln(f(x, y)) is a linear function of ln(y). Thus,
ln(f(x, y)) is a bilinear function of the two variables ln(x) and ln(y). Due to
symmetry, we thus have

ln(f(x, y)) = k0 + k1 · ln(x) + k1 · ln(y) + k2 · ln(x) · ln(y) (5)

for some parameters ki.
In particular, for x = y, we get

ln(f(x, y)) = k0 + 2k1 · ln(x) + k2 · (ln(x))2.

We can also consider the case when we take y = x and apply the same re-
scaling to both variables. In this case, we get f(x, x) = C · xp for some p, i.e.,
in logarithm terms,

ln(f(x, x)) = ln(C) + p · ln(x). (6)

By comparing the expressions (5) and (6), we conclude that k2 = 0. Thus,

ln(f(x, y)) = k0 + k1 · ln(x) + k1 · ln(y)

and f(x, y) = const · (x · y)k1 . Positivity implies that the constant is positive,
and thus, the expression is equivalent to (x · y)k1 for x ≥ 0 and y ≥ 0.

By using the equalities f(−x, y) = f(x,−y) = f(x, y), we can extend this
expression to all possible values of x and y.

The proposition is proven.
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