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Abstract

In the first approximation, the Universe’s expansion is described by
the Hubble’s law v = H · R, according to which the relative speed v of
two objects in the expanding Universe grows linearly with the distance R
between them. This law can be derived from the Copernican principle,
according to which, cosmology-wise, there is no special location in the
Universe, and thus, the expanding Universe should look the same from
every starting point. The problem with the Hubble’s formula is that for
large distance, it leads to non-physical larger-than-speed-of-light veloci-
ties. Since the Universe’s expansion is a consequence of Einstein’s General
Relativity Theory (GRT), this problem is usually handled by taking into
account GRT’s curved character of space-time. In this paper, we con-
sider this problem from a purely kinematic viewpoint. We show that if we
take into account special-relativistic effects when applying the Copernican
principle, we get a modified version of the Hubble’s law in which all the
velocities are physically meaningful – in the sense that they never exceed
the speed of light.

1 Introduction

Universe’s expansion and Hubble’s law: reminder. Since the 1920s,
it is known that distant galaxies are moving away, with a speed v which is
proportional to the distance R: v = H ·R. This empirical formula is known as
the Hubble’s law.

The empirical discovery of the Universe’s expansion turned out to be in
perfect accordance with Einstein’s General Relativity theory, according to which
the Universe cannot be stationary: it either expands or retracts. Moreover, the
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expansion predicted by General Relativity is in very good accordance with the
Hubble’s law; see, e.g., [1].

Hubble’s law follows from the Copernican principle. Later, it turned out
that the Hubble’s law can be derived from the so-called Copernican principle,
according to which, from the cosmological viewpoint, there is no special location
in the Universe, and thus, the expanding Universe should look the same from
every starting point. This principle is named after Copernicus, who argued
that, contrary to the then-prevalent opinion, there is nothing special about the
location of Earth in space – and moreover, if we do not try to place Earth at
the center of the Universe, our description of celestial mechanics becomes much
clearer and simpler; see, e.g., [1].

The problem with the Hubble’s law. From the physical viewpoint, the
Hubble’s law has a problem: for large distances R, the corresponding velocity
v exceeds the speed of light c. This runs contrary to one of the main principles
of special relativity, according to which physical velocities cannot exceed c (see,
e.g., [1]).

How this problem is solved now. Since the Universe’s expansion is a conse-
quence of Einstein’s General Relativity Theory (GRT), this problem is usually
handled by taking into account GRT’s curved character of space-time [1].

What we do in this paper. In this paper, we consider this problem from a
purely kinematic viewpoint.

We show that if we take into account special-relativistic effects when applying
the Copernican principle, we get a modified version of the Hubble’s law in which
all the velocities are physically meaningful – in the sense that they never exceed
the speed of light.

The structure of the paper. We start, in Section 2, by reminding the readers
how, in the non-relativistic case, the Copernican principle leads to the Hubble’s
law. Then, in Section 3, we show that a special-relativistic modification of this
derivation leads to a physically meaningful special-relativistic modification of
the Hubble’s law.

2 How the Hubble’s Law Is Derived from the
Copernican Principle: A Brief Reminder

What we want to analyze. We want to find out how the relative velocity v
of two galaxies depends on the distance R between them.

We can safely assume that the dependence v(R) is continuous – even differ-
entiable.

Copernican principle: reminder. With respect to the Universe’s expansion,
the Copernican principle states that the expansion should look the same from
every starting point.
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Consequences of this principle. The Copernican principle states that, for
any real number R > 0, if we take a object A at a distance R from the Earth,
then, from the viewpoint of this object, the Universe’s expansion looks the same
as from the Earth. In other words, an object B who is at a distance r from the
object A along the line Earth A (and which is thus at the distance R + r from
the Earth) moves with velocity v(r) relative to the object A.

Relative to the Earth, the object A moves with the velocity v(R). When B
moves with velocity v(r) relative to the object A, and the object Amoves relative
to the Earth with the velocity v(R), we can conclude, in the non-relativistic case,
that B moves with the velocity

v(R) + v(r)

relative to the Earth.
On the other hand, since the object B is located at the distance R+ r from

the Earth, it moves with the velocity

v(R+ r)

relative to the Earth. By comparing the above two expressions for the B-
relative-to-Earth velocity, we conclude that

v(R+ r) = v(R) + v(r) (1)

for all R > 0 and r > 0.

This formula implies the Hubble’s law. Indeed, by applying the formula
(1) multiple times, we conclude that

v(r1 + . . .+ rn) = v(r1) + . . .+ v(rn)

for all possible values r1, . . . , rn > 0. In particular, for every natural number n,

for r1 = . . . = rn =
1

n
, we have r1 + . . .+ rn = 1 and thus,

v(1) = v

(
1

n

)
+ ...+ v

(
1

n

)
︸ ︷︷ ︸

n times

.

Thus, v(1) = n · v
(
1

n

)
, hence v

(
1

n

)
=

1

n
· v(1).

Similarly, for any natural number m, for r1 = . . . = rm =
1

n
, we get

v
(m
n

)
= v

(
1

n

)
+ ...+ v

(
1

n

)
︸ ︷︷ ︸

m times

,

thus

v
(m
n

)
= m · v

(
1

n

)
=

m

n
· v(1).
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So, for rational numbers R =
m

n
, we have v(R) = H · R, where we denoted

H
def
= v(1).
Since we assumed that the dependence v(R) is continuous, and every real

number can be approximated, with arbitrary accuracy, by rational numbers,
we conclude that v(R) = H · R for all real values R > 0. This is exactly the
Hubble’s law.

3 What If We Take Special Relativity into Ac-
count

Let us recall the above situation. Let us consider the same situation: we
have the Earth, we have an object A at distance R from the Earth, and we have
an object B at the distance R + r from the Earth along the same line as the
object A. Relative to the Earth:

• the object A moves with velocity v(R), and

• the object B moves with the velocity v(R+ r).

The expansion should look the same from the viewpoint of the object A as
it looks from the viewpoint of the Earth.

Let us take relativistic effects into account. In the non-relativistic case,
from the viewpoint of the object A, the object B was at the distance r. However,
in the relativistic case, since the object A is moving with velocity v(R) relative

to Earth, the distance AB shrinks to r̃ = r ·

√
1−

(
v(R)

c

)2

; see, e.g., [1].

Therefore, from the viewpoint of the object A, B moves with velocity v(r̃)
relative to A.

We need to combine the A-relative-to-Earth and B-relative-to-A velocities
into the B-relative-to-Earth velocity. In the non-relativistic case, we simply
added the given velocities. In the relativistic case, we need to use the special-

relativity formula for such a combination: v =
v1 + v2

1 +
v1 · v2
c2

; see, e.g., [1]. In

particular, for v1 = v(R) and v2 = v(r̃), we conclude that

v(R+ r) =
v(R) + v(r̃)

1 +
v(R) · v(r̃)

c2

=

v(R) + v

r ·

√
1−

(
v(R)

c

)2


1 +

v(R) · v

r ·

√
1−

(
v(R)

c

)2


c2

.
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This formula can be simplified if we consider an auxiliary function u(R)
def
=

v(R)

c
instead of the desired function v(R). For this auxiliary function, the above
formula takes the following simplified form:

u(R+ r) =
u(R) + u

(
r
√
1− (u(R))2

)
1 + u(R) · u

(
r
√
1− (u(R))2

) . (2)

What can we derive from this equation? Since we assumed that the
dependence v(R) is differentiable, we can differentiate both sides of the equality
(2) by r and take r = 0.

In the left-hand side, we get the derivative u′(R). In the right-hand side, we
can use the usual formula for the derivative of the ratio:

(f/g)′(r) =
f ′(r) · g(r)− f(r) · g′(r)

(g(r))2
,

thus

(f/g)′(0) =
f ′(0) · g(0)− f(0) · g′(0)

(g(0))2
,

For f(r) = u(R) + u
(
r
√
1− (u(R))2

)
, we have f(0) = v(R) and

f ′(r) = u′
(
r
√

1− (u(R))2
)
·
√
1− u(R)2.

So, for r = 0, we have

f ′(0) = u′(0) ·
√
1− (u(R))2.

Similarly, for g(r) = 1 + u(R) · u
(
r
√
1− (u(R))2

)
, we have g(0) = 1 and

g′(r) = u(R) · u′
(
r
√

1− (u(R))2
)
·
√
1− (u(R))2.

So, for r = 0, we have

g′(0) = u(R) · u′(0) ·
√
1− (u(R))2.

Let us denote u′(0) by h. Then, by equating the derivatives of both sides of
the formula (2), we conclude that

u′(R) =

[
h ·

√
1− (u(R))2

]
· 1− u(R) ·

[
u(R) · h ·

√
1− (u(R))2

]
12

=[
h ·

√
1− (u(R))2

]
−
[
(u(R))2 · h ·

√
1− (u(R))2

]
,
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hence
du

dR
= u′(R) = h ·

√
1− (u(R))2 ·

(
1− (u(R))2

)
.

By moving all the terms related to u to the left-hand side and all the terms
related to R to the right-hand side, we get

du√
1− u2 · (1− u2)

= h · dR.

By integrating both sides, we get∫
du√

1− u2 · (1− u2)
=

∫
h · dR = h ·R+ C,

for some integration constant C.
To find the expression for the integral in the left-hand side, we can substitute

u = sin(θ), then du = cos(θ) · dθ, and the integral takes the form∫
cos(θ) dθ√

1− sin2(θ) ·
(
1− sin2(θ)

) =

∫
cos(θ) dθ√

cos2(θ) · cos2(θ)
=

∫
dθ

cos2(θ)
.

This integral is known – it is equal to tan(θ), hence tan(θ) = h · R + C. For
R = 0, we have v(0) = sin(θ), hence θ = 0, tan(θ) = 0, and thus, C = 0 and
tan(θ) = h ·R. Here,

tan(θ) =
sin(θ)

cos(θ)
=

sin(θ)√
1− sin2(θ)

=
u√

1− u2
,

so
u√

1− u2
= h ·R.

By squaring both sides and multiplying both sides by the resulting denominator,
we get

u2 = (1− u2) · h2 ·R2 = h2 ·R2 − u2 · h2 ·R2.

By moving the terms containing u2 to the left-hand side, we get

u2 · (1 + h2 ·R2) = h2 ·R2,

hence

u2 =
h2 ·R2

1 + h2 ·R2
,

therefore

u(R) =
h · r√

1 + h2 ·R2
.

So, for v(R) = c · u(R), we get

v(R) =
c · h · r√
1 + h2 ·R2

.
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If we denote H
def
= c · h, so that h =

H

c
, we get the following formula.

Resulting formula.

v(R) =
H ·R√

1 +

(
H ·R
c

)2
.

For this formula, as one can easily see, the velocity never exceeds the speed of
light.
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