Geospatial Relationship of Intelligent Compaction Measurement Values with In-Situ Testing for Quality Assessment of Geomaterials

Luis Alberto Lemus, University of Texas at El Paso


The implementation of Intelligent Compaction (IC) in the construction of transportation infrastructure as a tool for quality control of compacted geomaterials has attracted the attention of a number of highway agencies. Compaction quality has been conventionally assessed using density, and to a less extent, modulus-based spot measurements at selected locations along the roadway section. While spot measurements do not provide a thorough rendition of the level of compaction of the roadway, IC technology is effective in meeting full coverage requirements. IC roller measurements are accelerometer-based measurements recording machine-ground interaction assumed to be indicative of the stiffness of the compacted geomaterial. Different studies have attempted to relate IC measurement values with traditional deflection-based in situ moduli with mixed success. Weak correlations between IC measurements and in-situ spot test measurements have been attributed to variation in material properties such as moisture content, influence of depth of spot test penetration and the variation in underlying support, in addition to the uncertainty in the spatial location of the nearest IC data point. In this study, an approach is presented for establishing a spatial relationship between IC and spot test measurements using different nondestructive tests such as the Light-Weight Deflectometer, and the Dynamic Cone Penetrometer, by implementing a fixed interval analysis for the collected IC data that meets a lot size that is suited for contractor rework. This approach shows that a relationship exists between the IC measurements and the spot test measurements.^

Subject Area

Geotechnology|Civil engineering|Transportation

Recommended Citation

Lemus, Luis Alberto, "Geospatial Relationship of Intelligent Compaction Measurement Values with In-Situ Testing for Quality Assessment of Geomaterials" (2018). ETD Collection for University of Texas, El Paso. AAI13424020.